Advertisement

Effects of Strigolactones on Plant Roots

  • Adrianus P. Claassens
  • Paul N. Hills
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 52)

Abstract

Strigolactones are the most recently identified class of plant hormones, having only been classified as phytohormones in 2008. Considerable research has since been conducted on the biosynthesis of these hormones and on their actions in plants, both on the shoots and the roots. Large parts of the biosynthetic pathway have been determined, although several crucial steps which would explain how the different strigolactones arise from a common precursor are still missing. Strigolactones affect the growth and development of all types of roots. Strigolactone action is sensitive to environmental conditions, as the hormones may have virtually opposite effects in the different roots under different carbon and nutrient regimes. Generally, strigolactones enhance root growth when nutrients, particularly phosphate, are limiting but reduce root development when nutrients are abundant. This is also in line with the important role that strigolactones play in promoting the symbiotic relationship between plant roots and arbuscular mycorrhizal fungi, suggesting that strigolactones modify the plant root structure in order to balance carbon use and economy with the ability to obtain sufficient nutrients. In this review, we deal with strigolactone biosynthesis and perception and the role of strigolactones in rooting as well as how interaction of strigolactones with plant nutritional status and other phytohormones determines root architecture.

Keywords

Symbiotic relationship Mycorrhizal fungi Phytohormones Root architecture Plant nutrition 

References

  1. Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Il KH, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci USA 111:18084–18089CrossRefGoogle Scholar
  2. Akiyama K, Matsuzaki K-I, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedGoogle Scholar
  3. Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–1117PubMedPubMedCentralCrossRefGoogle Scholar
  4. Al-Ghazi Y, Muller B, Pinloche S, Tranbarger TJ, Nacry P, Rossignol M, Tardieu F, Doumas P (2003) Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signalling. Plant Cell Environ 26:1053–1066CrossRefGoogle Scholar
  5. Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029PubMedCrossRefGoogle Scholar
  6. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424PubMedCrossRefGoogle Scholar
  7. Arite T, Kameoka H, Kyozuka J (2012) Strigolactone positively controls crown root elongation in rice. J Plant Growth Regul 31:165–172CrossRefGoogle Scholar
  8. Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bainbridge K, Sorefan K, Ward S, Leyser O (2005) Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant J 44:569–580PubMedCrossRefGoogle Scholar
  10. Barry CS, Llop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986PubMedPubMedCentralCrossRefGoogle Scholar
  11. Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:620–627PubMedCrossRefGoogle Scholar
  12. Bennett T, Hines G, Leyser O (2014) Canalization: what the flux? Trends Genet 30:41–48PubMedCrossRefGoogle Scholar
  13. Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226PubMedPubMedCentralCrossRefGoogle Scholar
  14. Besserer A, Becard G, Jauneau A, Roux C, Sejalon-Delmas N (2008) GR24, a synthetic analogue of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:108.121400CrossRefGoogle Scholar
  15. Beveridge CA, Ross JJ, Murfet IC (1996) Branching in pea - Action of genes Rms3 and Rms4. Plant Physiol 110:859–865Google Scholar
  16. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238PubMedCrossRefGoogle Scholar
  17. Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449PubMedCrossRefGoogle Scholar
  18. Bouvier F, Suire C, Mutterer J, Camara B (2003) Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in crocus secondary metabolite biogenesis. Plant Cell Online 15:47–62CrossRefGoogle Scholar
  19. Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230CrossRefPubMedGoogle Scholar
  20. Brewer PB, Yoneyama K, Filardo F, Meyers E, Scaffidi A, Frickey T et al (2016) Lateral branching oxidoreductase acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 113:6301–6306CrossRefGoogle Scholar
  21. Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26PubMedCrossRefGoogle Scholar
  22. Buee M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698PubMedCrossRefGoogle Scholar
  23. Caba JM, Centeno ML, Fernández B, Gresshoff PM, Ligero F (2000) Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta 211:98–104PubMedCrossRefGoogle Scholar
  24. Ćavar S, Zwanenburg B, Tarkowski P (2015) Strigolactones: occurrence, structure, and biological activity in the rhizosphere. Phytochem Rev 14:691–711CrossRefGoogle Scholar
  25. Chevalier F, Nieminen K, Sanchez-Ferrero JC, Rodriguez ML, Chagoyen M, Hardtke CS, Cubas P (2014) Strigolactone promotes degradation of DWARF14, an α/ß hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26:1134–1150PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cook C, Whichhard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Sci New Ser 154:1189–1190PubMedCrossRefGoogle Scholar
  27. Czarnecki O, Yang J, Weston D, Tuskan G, Chen J-G (2013) A dual role of strigolactones in phosphate acquisition and utilization in plants. Int J Mol Sci 14:7681–7701PubMedPubMedCentralCrossRefGoogle Scholar
  28. De Cuyper C, Fromentin J, Yocgo RE, De Keyser A, Guillotin B, Kunert K, Boyer F-D, Goormachtig S (2015) From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J Exp Bot 66:137–146Google Scholar
  29. de Saint Germain A, Clave G, Badet-Denisot M-A, Pillot J-P, Cornu D, Le Caer J-P, Burger M, Pelissier F, Retailleau P, Turnbull C, Bonhomme S, Chory J, Rameau C, Boyer F-D (2016) An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol 12:787–794PubMedPubMedCentralCrossRefGoogle Scholar
  30. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457–466PubMedCrossRefGoogle Scholar
  31. Ganinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255Google Scholar
  32. Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202PubMedCrossRefGoogle Scholar
  33. Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5:56–60CrossRefPubMedGoogle Scholar
  34. Giovannetti M, Sbrana C, Silvia A, Avio L (1996) Analysis of factors involved in fungal recognition response to host-derived signals by arbuscular mycorrhizal fungi. New Phytol 133:65–71CrossRefGoogle Scholar
  35. Goldwasser Y, Yoneyama K, Xie X, Yoneyama K (2008) Production of Strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination. Plant Growth Regul 55:21–28CrossRefGoogle Scholar
  36. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedCrossRefGoogle Scholar
  37. Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–920PubMedCrossRefGoogle Scholar
  38. Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036PubMedCrossRefGoogle Scholar
  39. Harrison MJ, Buuren ML van (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629PubMedCrossRefGoogle Scholar
  40. Hell R, Hillebrand H (2001) Plant concepts for mineral acquisition and allocation. Curr Opin Biotechnol 12:161–168PubMedCrossRefGoogle Scholar
  41. Hoshikawa K (1989) The growing rice plant: an anatomical monograph. Nobunkyo XVI, TokyoGoogle Scholar
  42. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86PubMedCrossRefGoogle Scholar
  43. Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jiang L, Matthys C, Marquez-Garcia B, De Cuyper C, Smet L, De Keyser A, Boyer F-D, Beeckman T, Depuydt S, Goormachtig S (2016) Strigolactones spatially influence lateral root development through the cytokinin signaling network. J Exp Bot 67:379–389PubMedCrossRefGoogle Scholar
  46. Johnson AW, Gowada G, Hassanali A, Knox J, Monaco S, Razavi Z, Rosebery G (1981) The preparation of synthetic analogues of strigol. J Chem Soc Perkin Trans 1:1734CrossRefGoogle Scholar
  47. Johnson X, Brcich T, Dun EA, Goussot M, Haurogne K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species. genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014–1026PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jones AR, Kramer EM, Knox K, Swarup R, Malcolm J, Lazarus CM, Leyser HMO, Grierson CS (2009) Auxin transport through non-hair cells sustain root-hair development. Plant Cell 11:78–84Google Scholar
  49. Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J-P, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011a) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216CrossRefPubMedGoogle Scholar
  50. Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H (2011b) Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J Exp Bot 62:2915–2924CrossRefPubMedGoogle Scholar
  51. Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987PubMedCrossRefGoogle Scholar
  52. Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ, López-Ráez JA (2012) The tomato carotenoid cleavage dioxygenase8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547PubMedCrossRefGoogle Scholar
  53. Kohlen W, Charnikhova T, Bours R, López-Ráez JA, Bouwmeester H (2013) Tomato strigolactones: a more detailed look. Plant Signal Behav 8:e22785PubMedCrossRefGoogle Scholar
  54. Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190:545–549CrossRefPubMedGoogle Scholar
  55. Koltai H, Dor E, Hershenhorn J, Joel DM, Weininger S, Lekalla S, Shealtiel H, Bhattacharya C, Eliahu E, Resnick N, Barg R, Kapulnik Y (2010a) Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul 29:129–136CrossRefGoogle Scholar
  56. Koltai H, Lekkala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Yoneyama K, Hershenhorn J, Joel DM, Kapulnik Y (2010b) A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J Exp Bot 61:1739–1749PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344PubMedCrossRefGoogle Scholar
  58. Liang Y, Ward S, Li P, Bennett T, Leyser O (2016) SMAX1-LIKE7 signals from the nucleus to regulate shoot development in Arabidopsis via partially EAR motif-independent mechanisms. Plant Cell 28(7).  https://doi.org/10.1105/tpc.16.00286
  59. Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell Online 21:1512–1525CrossRefGoogle Scholar
  60. López-Bucio J (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256PubMedPubMedCentralCrossRefGoogle Scholar
  61. López-Bucio J, Cruz-Ramırez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287PubMedCrossRefGoogle Scholar
  62. López-Ráez JA, Bouwmeester H (2008) Fine-tuning regulation of strigolactone biosynthesis under phosphate starvation. Plant Signal Behav 3:963–965PubMedPubMedCentralCrossRefGoogle Scholar
  63. López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874CrossRefPubMedGoogle Scholar
  64. Maldonado-Mendoza I, Dewbre G, Harrison M (2001) A phosphate transporter gene from the extraradical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact 14:1140–1148CrossRefPubMedGoogle Scholar
  65. Mangnus EM, Zwanenburg B (1992) Tentative molecular mechanism for germination stimulation of Striga and Orobanche seeds by strigol and its synthetic analogs. J Agric Food Chem 40:1066–1070CrossRefGoogle Scholar
  66. Mangnus EM, Dommerholt FJ, De Jong RLP, Zwanenburg B (1992) Improved synthesis of strigol analog GR24 and evaluation of the biological activity of its diastereomers. J Agric Food Chem 40:1230–1235CrossRefGoogle Scholar
  67. Matthys C, Walton A, Struk S, Stes E, Boyer F-D, Gevaert K, Goormachtig S (2016) The whats, the wheres and the hows of strigolactone action in the roots. Planta 243:1327–1337PubMedCrossRefGoogle Scholar
  68. Matusova R (2005) The strigolactone germination stimulants of the plant-parasitic striga and orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer PB et al. (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–1341PubMedPubMedCentralCrossRefGoogle Scholar
  70. McGinnis KM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell Online 15:1120–1130CrossRefGoogle Scholar
  71. Muller M, Schmidt W (2004) Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol 134:409–419PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nagahashi G, Douds DD (2000) Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol Res 104:1453–1464CrossRefGoogle Scholar
  73. Nakamura H, Xue Y-L, Miyakawa T, Hou F, Qin H-M, Fukui K, Shi X, Ito E, Ito S, Park S-H, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun 4:1–10Google Scholar
  74. Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:8897–8902PubMedPubMedCentralCrossRefGoogle Scholar
  75. Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112:391–408PubMedCrossRefGoogle Scholar
  76. Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113PubMedCrossRefGoogle Scholar
  77. Pandya-Kumar N, Shema R, Kumar M, Mayzlish-Gati E, Levy D, Zemach H, Belausov E, Wininger S, Abu-Abied M, Kapulnik Y, Koltai H (2014) Strigolactone analog GR24 triggers changes in PIN2 polarity, vesicle trafficking and actin filament architecture. New Phytol 202:1184–1196PubMedPubMedCentralCrossRefGoogle Scholar
  78. Perez-Torres C-A, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell Online 20:3258–3272CrossRefGoogle Scholar
  79. Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560CrossRefPubMedGoogle Scholar
  80. Rasmussen A, Beveridge CA, Geelen D (2012a) Inhibition of strigolactones promotes adventitious root formation. Plant Signal Behav 7:694–697PubMedPubMedCentralCrossRefGoogle Scholar
  81. Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T, Beveridge CA (2012b) Strigolactones suppress adventitious rooting in Arabidopsis and Pea. Plant Physiol 158:1976–1987PubMedPubMedCentralCrossRefGoogle Scholar
  82. Remy W, Taylortt TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C et al (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83PubMedCrossRefGoogle Scholar
  85. Sasse J, Simon S, Gübeli C, Liu GW, Cheng X, Friml J, Bouwmeester H, Martinoia E, Borghi L (2015) Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Curr Biol 25:647–655PubMedCrossRefGoogle Scholar
  86. Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol 165:1221–1232PubMedPubMedCentralCrossRefGoogle Scholar
  87. Schwartz SH, Qin X, Zeevaart JAD (2001) Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 276:25208–25211PubMedCrossRefGoogle Scholar
  88. Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci USA 111:1640–1645PubMedPubMedCentralCrossRefGoogle Scholar
  89. Shen H, Luong P, Huq E (2007) The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145:1471–1483PubMedPubMedCentralCrossRefGoogle Scholar
  90. Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 11:e1001474PubMedPubMedCentralCrossRefGoogle Scholar
  91. Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coin. Nature 363:67–69CrossRefGoogle Scholar
  92. Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, Burlington, MA, pp vii–vixGoogle Scholar
  93. Smith SE, Smith FA, Jakobsen I, Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth. Plant Physiol 133:16–20PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sorefan K (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474CrossRefGoogle Scholar
  95. Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 Family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27:3143–3159PubMedPubMedCentralCrossRefGoogle Scholar
  96. Stanga JP, Smith SM, Briggs WR, Nelson DC (2013) SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol 163:318–330PubMedPubMedCentralCrossRefGoogle Scholar
  97. Stirnberg P, Furner IJ, Ottoline Leyser HM (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94PubMedCrossRefGoogle Scholar
  98. Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645PubMedCrossRefGoogle Scholar
  100. Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769CrossRefPubMedGoogle Scholar
  101. Turnbull CGN, Booker JP, Leyser HMO (2002) Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J 32:255–262PubMedCrossRefGoogle Scholar
  102. Umehara M, Cao M, Akiyama K, Akatsu T, Seto Y, Hanada A, Li W, Takeda-Kamiya N, Morimoto Y, Yamaguchi S (2015) Structural requirements of strigolactones for shoot branching inhibition in Rice and Arabidopsis. Plant Cell Physiol 56:1059–1072PubMedCrossRefGoogle Scholar
  103. Vanstraelen M, Benková E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol 28:463–487PubMedCrossRefGoogle Scholar
  104. Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ, Fernie AR, Klee HJ (2009) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311PubMedCrossRefGoogle Scholar
  105. Walch-Liu P, Ivanov II, Filleur S, Gan Y, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Li J (2015) Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27:3128–3142PubMedPubMedCentralCrossRefGoogle Scholar
  107. Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA (2012) The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol 159:1073–1085PubMedPubMedCentralCrossRefGoogle Scholar
  108. Waters MT, Scaffidi A, Moulin SLY, Sun YK, Flematti GR, Smith SM (2015) A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones. Plant Cell 27:1925–1944PubMedPubMedCentralCrossRefGoogle Scholar
  109. Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322PubMedPubMedCentralCrossRefGoogle Scholar
  110. Xie X, Yoneyama K, Harada Y, Fusegi N, Yamada Y, Ito S, Yokota T, Takeuchi Y, Yoneyama K (2009) Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum. Phytochemistry 70:211–215PubMedCrossRefGoogle Scholar
  111. Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117CrossRefPubMedGoogle Scholar
  112. Xie X, Yoneyama K, Kisugi T, Nomura T, Akiyama K, Asami T, Yoneyama K (2015) Strigolactones are transported from roots to shoots, although not through the xylem. J Pestic Sci 40:214–216CrossRefGoogle Scholar
  113. Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112PubMedCrossRefGoogle Scholar
  114. Yamamoto M, Miki T, Ishiki Y, Fujinami K, Yanagisawa Y, Nakagawa H, Ogura N, Hirabayashi T, Sato T (1995) The synthesis of ethylene in melon fruit during the early stage of ripening. Plant Cell Physiol 36:591–596Google Scholar
  115. Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132PubMedCrossRefGoogle Scholar
  116. Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494PubMedCrossRefGoogle Scholar
  117. Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K (2012) The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol 196:1208–1216PubMedCrossRefGoogle Scholar
  118. Zhang Y, Haider I, Ruyter-Spira C, Bouwmeester HJ (2013) Strigolactone biosynthesis and biology. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vols 1 & 2. Wiley, Hoboken, NJ, pp 355–337CrossRefGoogle Scholar
  119. Zhang Y, van Dijk ADJ, Scaffidi A, Flematti GR, Hofmann M, al CTV (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10:1028–1033PubMedCrossRefGoogle Scholar
  120. Zhao L-H, Zhou XE, Wu Z-S, Yi W, Xu Y, Li S et al (2013) Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 23:436–439PubMedPubMedCentralCrossRefGoogle Scholar
  121. Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N et al. (2013) D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504:406–410PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48:687–698PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetics, Institute for Plant BiotechnologyStellenbosch UniversityMatielandSouth Africa

Personalised recommendations