Root Biology pp 429-449 | Cite as

Arbuscular Mycorrhizal Fungi and Their Responses to Nutrient Enrichment

  • Haishui Yang
  • Michelle Schroeder-Moreno
  • Bhoopander Giri
  • Shuijin Hu
Part of the Soil Biology book series (SOILBIOL, volume 52)


The roots of most land plants form mycorrhizal associations with soil fungi, in which plants trade carbon for increased nutrient acquisition (e.g., N and P) under nutrient deficiency conditions. However, how nutrient enrichment affects mycorrhiza is still not well understood, in particular under future global changing scenarios such as nitrogen deposition. In this chapter, we first review the major pathways of mycorrhizal-mediated nutrient acquisition and molecular mechanisms of sensing nutrient availability for mycorrhizal fungi and roots. Next, we propose two conceptual models that may control plant C allocation to mycorrhizal fungi in response to nutrient enrichment: reciprocal reward model and root-mycorrhiza trade-off model. We also describe a plant-centric model and fungal-centric model to explain responses of the mycorrhizal fungal community to nutrient enrichment as well as examine impacts of nutrient inputs on mycorrhizas functioning.


Mycorrhiza Fertilization Community Function Root system Nutrient uptake 


  1. Al-Karaki GN, Clark R (1999) Mycorrhizal influence on protein and lipid of durum wheat grown at different soil phosphorus levels. Mycorrhiza 9:97–101CrossRefGoogle Scholar
  2. Amtmann A, Hammond JP, Armengaud P, White PJ (2006) Nutrient sensing and signalling in plants: potassium and phosphorus. In: Callow JA (ed) Advances in botanical research. Incorporating advances in plant pathology, vol 43. Academic, London, pp 209–257Google Scholar
  3. Antoninka A, Reich PB, Johnson NC (2011) Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol 192:200–214PubMedCrossRefGoogle Scholar
  4. Avio L, Castaldini M, Fabiani A, Bedini S, Sbrana C, Turrini A, Giovannetti M (2013) Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol Biochem 67:285–294CrossRefGoogle Scholar
  5. Azcón R, Ambrosano E, Charest C (2003) Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci 165:1137–1145CrossRefGoogle Scholar
  6. Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:620–627PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bennett AE, Bever JD (2009) Trade-offs between arbuscular mycorrhizal fungal competitive ability and host growth promotion in Plantago lanceolata. Oecologia 160:807–816PubMedCrossRefGoogle Scholar
  8. Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21PubMedCrossRefGoogle Scholar
  9. Blanke V, Renker C, Wagner M, Fullner K, Held M, Kuhn AJ, Buscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992PubMedCrossRefGoogle Scholar
  10. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59PubMedCrossRefGoogle Scholar
  11. Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057–3068Google Scholar
  12. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77CrossRefGoogle Scholar
  13. Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC (2014) Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Glob Chang Biol 20:3646–3659PubMedCrossRefGoogle Scholar
  14. Camenzind T, Homeier J, Dietrich K, Hempel S, Hertel D, Krohn A, Leuschner C, Oelmann Y, Olsson PA, Suarez JP, Rillig MC (2016) Opposing effects of nitrogen versus phosphorus additions on mycorrhizal fungal abundance along an elevational gradient in tropical montane forests. Soil Biol Biochem 94:37–47CrossRefGoogle Scholar
  15. Campos-Soriano L, Garcia-Martinez J, Segundo BS (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592PubMedCrossRefGoogle Scholar
  16. Chen YL, Zhang X, Ye JS, Han HY, Wan SQ, Chen BD (2014) Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biol Biochem 69:371–381CrossRefGoogle Scholar
  17. Cheng L, Booker F, Tu C, Burkey K, Zhou L, Shew H, Rufty T, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084PubMedCrossRefGoogle Scholar
  18. Cheng Y, Ishimoto K, Kuriyama Y, Osaki M, Ezawa T (2013) Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities. Plant Soil 365:397–407CrossRefGoogle Scholar
  19. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715PubMedCrossRefGoogle Scholar
  20. Cofala J, Amann M, Klimont Z, Kupiainen K, Höglund-Isaksson L (2007) Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos Environ 41:8486–8499CrossRefGoogle Scholar
  21. Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496CrossRefGoogle Scholar
  22. Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544CrossRefGoogle Scholar
  23. Eissenstat DM, Graham JH, Syvertsen JP, Drouillard DL (1993) Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Ann Bot 71:1–10CrossRefGoogle Scholar
  24. Ekblad A, Mikusinska A, Ågren GI, Menichetti L, Wallander H, Vilgalys R, Bahr A, Eriksson U (2016) Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization. New Phytol 211:874–885PubMedCrossRefGoogle Scholar
  25. Facelli E, Smith SE, Facelli JM, Christophersen HM, Smith FA (2010) Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytol 185:1050–1061PubMedCrossRefGoogle Scholar
  26. Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Buecking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 109:2666–2671PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, Barry KW, Girlanda M, Grigoriev I, Martin F, Balestrini R, Perotto S (2017) Fungal and plant gene expression in the Tulasnella calospora-Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol 213:365–379PubMedCrossRefGoogle Scholar
  28. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892PubMedCrossRefGoogle Scholar
  29. Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31CrossRefGoogle Scholar
  30. Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296:92–100PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agr Ecosyst Environ 113:17–35CrossRefGoogle Scholar
  32. Govindarajulu M, Pfeffer P, Jin H, Abubaker J, Douds D, Allen J, Bücking H, Lammers P, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823CrossRefPubMedGoogle Scholar
  33. Gryndler M, Larsen J, Hršelová H, Řezáčová V, Gryndlerová H, Kubát J (2006) Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 16:159–166PubMedCrossRefGoogle Scholar
  34. Guescini M, Zeppa S, Pierleoni R, Sisti D, Stocchi L, Stocchi V (2007) The expression profile of the Tuber borchii nitrite reductase suggests its positive contribution to host plant nitrogen nutrition. Curr Genet 51:31–41PubMedCrossRefGoogle Scholar
  35. Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73PubMedPubMedCentralCrossRefGoogle Scholar
  36. Harrison MJ, Vanbuuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629CrossRefPubMedGoogle Scholar
  37. Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hetrick B, Wilson G, Cox T (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512–518CrossRefGoogle Scholar
  39. Hobbie JE, Hobbie EA (2006) N-15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87:816PubMedCrossRefGoogle Scholar
  40. Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299CrossRefPubMedGoogle Scholar
  41. Huang RJ, Zhang YL, Bozzetti C, Ho KF, Cao JJ, Han YM et al (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678CrossRefGoogle Scholar
  42. Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678PubMedCrossRefGoogle Scholar
  43. Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I: spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380CrossRefGoogle Scholar
  44. Javelle A, Andre B, Marini AM, Chalot M (2003) High-affinity ammonium transporters and nitrogen sensing in mycorrhizas. Trends Microbiol 11:53–55PubMedCrossRefGoogle Scholar
  45. Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104:1720–1725PubMedPubMedCentralCrossRefGoogle Scholar
  46. Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908CrossRefGoogle Scholar
  47. Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515CrossRefGoogle Scholar
  48. Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci 106:3041–3046PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231:65–79CrossRefGoogle Scholar
  50. Kaldorf M, Schmelzer E, Bothe H (1998) Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza. Mol Plant Microbe Interact 11:439PubMedCrossRefGoogle Scholar
  51. Kiers ET, van der Heijden MGA (2006) Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 87:1627–1636PubMedCrossRefGoogle Scholar
  52. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882CrossRefGoogle Scholar
  53. Kim YC, Gao C, Zheng Y, He XH, Yang W, Chen L, Wan SQ, Guo LD (2015) Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem. Mycorrhiza 25:267–276PubMedCrossRefGoogle Scholar
  54. Knegt B, Jansa J, Franken O, Engelmoer DJ, Werner GD, Bücking H, Kiers ET (2016) Host plant quality mediates competition between arbuscular mycorrhizal fungi. Fungal Ecol 20:233–240CrossRefGoogle Scholar
  55. Koegel S, Lahmidi NA, Arnould C, Chatagnier O, Walder F, Ineichen K, Boller T, Wipf D, Wiemken A, Courty P-E (2013) The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytol 198:853–865PubMedCrossRefGoogle Scholar
  56. Koide RT (2000) Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytol 147:223–235CrossRefGoogle Scholar
  57. Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517CrossRefGoogle Scholar
  58. Koide RT, Fernandez CW, Peoples MS (2011) Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition? New Phytol 191:508–514PubMedCrossRefGoogle Scholar
  59. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937PubMedCrossRefGoogle Scholar
  60. Lanquar V, Loque D, Hormann F, Yuan LX, Bohner A, Engelsberger WR, Lalonde S, Schulze WX, von Wiren N, Frommer WB (2009) Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. Plant Cell 21:3610–3622PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163PubMedCrossRefGoogle Scholar
  62. Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771PubMedCrossRefGoogle Scholar
  63. Liu YJ, Mao L, Li JY, Shi GX, Jiang SJ, Ma XJ, An LZ, Du GZ, Feng HY (2015) Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi. Plant Soil 386:341–355CrossRefGoogle Scholar
  64. Lopez-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102–110PubMedCrossRefGoogle Scholar
  65. Lorenz MC, Heitman J (1998) The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 17:1236–1247PubMedPubMedCentralCrossRefGoogle Scholar
  66. MacFall JS, Slack SA, Wehrli S (1992) Phosphorus distribution in red pine roots and the ectomycorrhizal fungus Hebeloma arenosa. Plant Physiol 100:713–717PubMedPubMedCentralCrossRefGoogle Scholar
  67. Maldonado-Mendoza I, Dewbre G, Harrison M (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact 14:1140–1148CrossRefPubMedGoogle Scholar
  68. McCormick MK, Taylor DL, Juhaszova K, Burnett RK, Whigham DF, O'Neill JP (2012) Limitations on orchid recruitment: not a simple picture. Mol Ecol 21:1511–1523PubMedCrossRefGoogle Scholar
  69. Monteagudo L, Luis Moreno J, Picazo F (2012) River eutrophication: irrigated vs. non-irrigated agriculture through different spatial scales. Water Res 46:2759–2771PubMedCrossRefGoogle Scholar
  70. Muller T, Avolio M, Olivi M, Benjdia M, Rikirsch E, Kasaras A, Fitz M, Chalot M, Wipf D (2007) Nitrogen transport in the ectomycorrhiza association: the Hebeloma cylindrosporum-Pinus pinaster model. Phytochemistry 68:41–51PubMedCrossRefGoogle Scholar
  71. Munos S, Cazettes C, Fizames C, Gaymard F, Tillard P, Lepetit M, Lejay L, Gojon A (2004) Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell 16:2433–2447PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy A, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236CrossRefPubMedGoogle Scholar
  73. Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959PubMedCrossRefGoogle Scholar
  74. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324PubMedPubMedCentralCrossRefGoogle Scholar
  75. Peng SL, Guo T, Liu GC (2013) The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China. Soil Biol Biochem 57:411–417CrossRefGoogle Scholar
  76. Popova Y, Thayumanavan P, Lonati E, Agrochao M, Thevelein JM (2010) Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc Natl Acad Sci USA 107:2890–2895PubMedPubMedCentralCrossRefGoogle Scholar
  77. Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL (2007) Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296:65–75CrossRefGoogle Scholar
  78. Pritchard SG, Taylor BN, Cooper ER, Beidler KV, Strand AE, McCormack ML, Zhang S (2014) Long-term dynamics of mycorrhizal root tips in a loblolly pine forest grown with free-air CO2 enrichment and soil N fertilization for 6 years. Glob Chang Biol 20:1313–1326PubMedCrossRefGoogle Scholar
  79. Qin L, Zhao J, Tian J, Chen LY, Sun ZA, Guo YX, Lu X, Gu MA, Xu GH, Liao H (2012) The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol 159:1634–1643PubMedPubMedCentralCrossRefGoogle Scholar
  80. Reddy MS, Kour M, Aggarwal S, Ahuja S, Marmeisse R, Fraissinet-Tachet L (2016) Metal induction of a Pisolithus albus metallothionein and its potential involvement in heavy metal tolerance during mycorrhizal symbiosis. Environ Microbiol 18:2446–2454PubMedCrossRefGoogle Scholar
  81. Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869PubMedCrossRefGoogle Scholar
  82. Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754CrossRefGoogle Scholar
  83. Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388PubMedCrossRefGoogle Scholar
  84. Ruiz-Lozano JM, Porcel R, Aroca R (2006) Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes? New Phytol 171:693–698PubMedCrossRefGoogle Scholar
  85. Saito M, Oba H, Kojima T (2011) Effect of nitrogen on the sporulation of arbuscular mycorrhizal fungi colonizing several gramineous plant species. Soil Sci Plant Nutr 57:29–34CrossRefGoogle Scholar
  86. Scheible W-R, Rojas-Triana M (2015) Sensing, signalling, and control of phosphate starvation in plants: molecular players and applications. In: Plaxton WC, Lambers H (eds) Phosphorus metabolism in plants, vol 48. Wiley, Hoboken, pp 25–63Google Scholar
  87. Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106:203–208PubMedCrossRefGoogle Scholar
  88. Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiss M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878PubMedPubMedCentralCrossRefGoogle Scholar
  89. Shi NN, Gao C, Zheng Y, Guo LD (2016) Arbuscular mycorrhizal fungus identity and diversity influence subtropical tree competition. Fungal Ecol 20:115–123CrossRefGoogle Scholar
  90. Smil V (1999) Nitrogen in crop production: an account of global flows. Global Biogeochem Cycles 13:647–662CrossRefGoogle Scholar
  91. Smil V (2003) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88CrossRefGoogle Scholar
  92. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San DiegoGoogle Scholar
  93. Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879PubMedCrossRefGoogle Scholar
  94. Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796PubMedCrossRefGoogle Scholar
  95. Teng W, Zhao YY, Zhao XQ, He X, Ma WY, Deng Y, Chen XP, Tong YP (2017) Genome-wide identification, characterization, and expression analysis of PHT1 phosphate transporters in wheat. Front Plant Sci 8:543PubMedPubMedCentralGoogle Scholar
  96. Thirkell TJ, Cameron DD, Hodge A (2016) Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth. Plant Cell Environ 39:1683PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tian C, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153:1175–1187PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tilman D, Fargione J, Wolff B, D'Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281PubMedCrossRefGoogle Scholar
  99. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677PubMedCrossRefGoogle Scholar
  100. Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769CrossRefPubMedGoogle Scholar
  101. Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355CrossRefGoogle Scholar
  102. Tunlid A, Floudas D, Koide RT, Martin F (2016) Molecular mycorrhizal symbiosis: 15. Soil organic matter decomposition mechanisms in ectomycorrhizal fungi. Wiley, HobokenGoogle Scholar
  103. Ulm F, Gouveia C, Dias T, Cruz C (2017) N fertilization in a Mediterranean ecosystem alters N and P turnover in soil, roots and the ectomycorrhizal community. Soil Biol Biochem 113:60–70CrossRefGoogle Scholar
  104. Unger S, Friede M, Hundacker J, Volkmar K, Beyschlag W (2016) Allocation trade-off between root and mycorrhizal surface defines nitrogen and phosphorus relations in 13 grassland species. Plant Soil 407:279–292CrossRefGoogle Scholar
  105. van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091CrossRefGoogle Scholar
  106. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  107. van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006a) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752PubMedCrossRefGoogle Scholar
  108. van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006b) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752PubMedCrossRefGoogle Scholar
  109. van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310CrossRefGoogle Scholar
  110. van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423PubMedCrossRefGoogle Scholar
  111. van Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM (2007) Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytol 176:175–183PubMedCrossRefGoogle Scholar
  112. van Diepen LTA, Lilleskov EA, Pregitzer KS (2011) Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Mol Ecol 20:799–811CrossRefGoogle Scholar
  113. Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564PubMedCrossRefGoogle Scholar
  114. Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095PubMedCrossRefGoogle Scholar
  115. Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011) Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology 92:1303–1313PubMedCrossRefGoogle Scholar
  116. Wang C, White PJ, Li C (2017) Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site. Mycorrhiza 27:369–381PubMedCrossRefGoogle Scholar
  117. Werner GDA, Kiers ET (2015) Partner selection in the mycorrhizal mutualism. New Phytol 205:1437–1442PubMedCrossRefGoogle Scholar
  118. Williams A, Manoharan L, Rosenstock NP, Olsson PA, Hedlund K (2017) Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytol 213:874–885PubMedCrossRefGoogle Scholar
  119. Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461CrossRefPubMedGoogle Scholar
  120. Withers PJA, Neal C, Jarvie HP, Doody DG (2014) Agriculture and eutrophication: where do we go from here? Sustainability 6:5853–5875CrossRefGoogle Scholar
  121. Xiang X, Gibbons SM, He J-S, Wang C, He D, Li Q, Ni Y, Chu H (2016) Rapid response of arbuscular mycorrhizal fungal communities to short-term fertilization in an alpine grassland on the Qinghai-Tibet Plateau. Peerj 4:e2226PubMedPubMedCentralCrossRefGoogle Scholar
  122. Xie XA, Lin H, Peng XW, Xu CR, Sun ZF, Jiang KX, Huang A, Wu XH, Tang NW, Salvioli A, Bonfante P, Zhao B (2016) Arbuscular mycorrhizal symbiosis requires a phosphate transceptor in the Gigaspora margarita fungal symbiont. Mol Plant 9:1583–1608PubMedCrossRefGoogle Scholar
  123. Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot 58:2491PubMedCrossRefGoogle Scholar
  124. Yang HS, Zhang Q, Koide RT, Hoeksema JD, Tang J, Bian X, Hu SJ, Chen X (2017) Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. J Ecol 105:219–228CrossRefGoogle Scholar
  125. Zhang L, Fan J, Ding X, He X, Zhang F, Feng G (2014a) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem 74:177–183CrossRefGoogle Scholar
  126. Zhang Y, Zang GQ, Tang ZH, Chen XH, Yu YS (2014b) Burning straw, air pollution, and respiratory infections in China. Am J Infect Control 42:815–815PubMedCrossRefGoogle Scholar
  127. Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032PubMedCrossRefGoogle Scholar
  128. Zhu Y, Smith S, Barritt A, Smith F (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255CrossRefGoogle Scholar
  129. Zhu HH, Yao Q, Sun XT, Hu YL (2007) Colonization, ALP activity and plant growth promotion of native and exotic arbuscular mycorrhizal fungi at low pH. Soil Biol Biochem 39:942–950CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Haishui Yang
    • 1
  • Michelle Schroeder-Moreno
    • 2
  • Bhoopander Giri
    • 3
  • Shuijin Hu
    • 4
    • 5
  1. 1.College of AgricultureNanjing Agricultural UniversityNanjingChina
  2. 2.Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Botany, Swami Shraddhanand CollegeUniversity of DelhiDelhiIndia
  4. 4.College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
  5. 5.Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations