Advertisement

Root Biology pp 367-407 | Cite as

Morphological and Physiological Aspects of Symbiotic Plant–Microbe Interactions and Their Significance

  • Surinder Kaur
  • Gurpreet Kaur
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 52)

Abstract

All living organisms seem to have a large number of interactions among themselves, but mutualism is of special interest ecologically and evolutionarily. Mutualism is a general term in which two organisms interact where either one (commensalism) or both are benefitted (symbiosis). Plants in nature always grow among soil microorganisms, and some of these become closely associated with plants to form mutualistic symbioses. Examples of such symbiotic microorganisms include N2-fixing prokaryotes (Rhizobium) and mycorrhizal fungi of various types. These associations affect fitness and survival of plants. It is particularly true for mycorrhiza which promotes better absorption of nutrients, while Rhizobium itself is involved in fulfilling nitrogen requirements of the plant. Such interactions involve a large number of cross talks by means of surface chemistry and release of chemicals. Host–symbiont specificity is the key feature in symbiotic interactions. Besides providing nutritional benefits to their hosts, mycorrhizal fungi also contribute toward ecological significance such as decreased susceptibility to biotic diseases; improved tolerance to abiotic stresses such as heavy metals, drought, and salinity; resistance to invasion by weeds; and synergistic interaction with other useful soil microbes. Interestingly Rhizobium is able to fix nitrogen for the host crop plants even in highly arid conditions and improve productivity in such unfavorable conditions. In view of their importance in plant growth and development, this chapter highlights the morphology, systematics, and ecological significance of the most important plant–microbe symbionts–Rhizobium, mycorrhizae, and a growth-promoting endophyte, Piriformospora indica.

Keywords

Symbiosis associations Endophytes Rhizobium Mycorrhizal fungi Piriformospora indica 

References

  1. Abdelaziz ME, Kim D, Ali S, Fedoroff NV, Al-Babili S (2017) The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Sci 263:107–115PubMedCrossRefGoogle Scholar
  2. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesqueterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akkermans ADL, Abdulkadir S, Trinick MJ (1978) N2-fixing root nodules in Ulmaceae: Parasponia or (and) Trema spp. Plant Soil 49:711–715CrossRefGoogle Scholar
  4. Alazard D (1985) Stem and root nodulation in Aeschynomene spp. Appl Environ Microbiol 50:732–734PubMedPubMedCentralGoogle Scholar
  5. Al-Karaki MG, Zak B (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anderson IC, Cairney JWG (2007) Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiol Rev 31:388–406PubMedCrossRefGoogle Scholar
  7. Ansari MW, Bains G, Shukla A, Pant RC, Tuteja N (2013) Low temperature stress ethylene and not Fusarium might be responsible for mango malformation. Plant Physiol Biochem 69:34–38PubMedCrossRefGoogle Scholar
  8. Ansari MW, Gill SS, Tuteja N (2014) Piriformospora indica a powerful tool for crop improvement. Proc Indian Natl Sci Acad 80:317–324CrossRefGoogle Scholar
  9. Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW (2011) Economic game theory for mutualism and cooperation. Ecol Lett 14:1300–1312PubMedCrossRefGoogle Scholar
  10. Arnebrant K, Hans EK, Finlay RD, Söderström B (1993) Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug, ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol 124(2):231–242CrossRefGoogle Scholar
  11. Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  12. Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24PubMedPubMedCentralCrossRefGoogle Scholar
  13. Badenoch-Jones J, Summons RE, Rolfe BG, Letham DS (1984) Phytohormones, Rhizobium mutants, and nodulation in legumes IV Auxin metabolites in pea root nodules. J Plant Growth Regul 3:23–39CrossRefGoogle Scholar
  14. Bago B, Cano C (2005) Breaking myths on arbuscular mycorrhizas in vitro biology. In: Declerck S, Strullu DG, Fortin A (eds) Soil biology, vol 4. Springer, Berlin, pp 111–138Google Scholar
  15. Balemi T, Negisho K (2012) Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J Soil Sci Plant Nutr 12:547–562CrossRefGoogle Scholar
  16. Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510PubMedCrossRefGoogle Scholar
  17. Bandou E, Lebailly F, Muller F, Dulormne M, Toribio A, Chabrol J, Courtecuisse R, Plenchette C, Prin Y, Duponnois R, Thiao M, Sylla S, Dreyfus B, Bâ AM (2006) The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings. Mycorrhiza 16(8):559–565PubMedCrossRefGoogle Scholar
  18. Banfalvi Z, Sakanyan V, Koncz C, Kiss A, Dusha I, Kondorosi A (1981) Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R. meliloti. Mol Gen Genet 184:318–325PubMedGoogle Scholar
  19. Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin IT (2005) Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146:234–243PubMedCrossRefGoogle Scholar
  20. Barea JM, Azcón-Aguilar C (2012) Evolution, biology and ecological effects of arbuscular mycorrhizas. In: Camisao AF, Pedroso CC (eds) Symbiosis: evolution, biology and ecological effects. Nova, Hauppauge, pp 1–34Google Scholar
  21. Becker M, Ladha JK, Ottow JCG (1988) Stem nodulating legumes as green manure for lowland rice. Philipp J Crop Sci 13:121–127Google Scholar
  22. Beniwal RS, Langenfield-Heyser R, Polle A (2010) Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environ Exp Bot 69:189–197CrossRefGoogle Scholar
  23. Bergersen FJ (1974) Formation and function of bacteroids. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 473–498Google Scholar
  24. Bergersen FJ, Turner GL (1988) Glutamate as a carbon source for N2-fixing bacteroids prepared from soybean nodules. J Gen Microbiol 134:2441–2448Google Scholar
  25. Besserer A, Puech-Pages V, Kiefer P, Gomez-Rolden V, Jauneau A, Roy S, Porttais J-C, Roux C, Becard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226.  https://doi.org/10.1372/jpournal.pbio.0040226 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Blasius D, Feil W, Kottke I, Oberwinkler F (1986) Hartig net structure and formation in fully ensheathed ectomycorrhizas. Nord J Bot 6:837–842CrossRefGoogle Scholar
  27. Błaszkowski J (2012) Glomeromycota. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, p 303Google Scholar
  28. Błaszkowski J, Chwat G, Goralska A, Ryska P, Kovacs GM (2015) Two new genera: Dominikia and Kamienska and D. disticha sp nov in Glomeromycota. Nova Hedwigia 100:225–238CrossRefGoogle Scholar
  29. Bohlool BB, Schmidt EL (1974) Lectins: a possible basis for specificity in the Rhizobium–legume symbiosis. Science 185:269–271PubMedCrossRefGoogle Scholar
  30. Bojarczuk K, Karliński L, Hazubska-Przybył T, Kieliszewska-Rokicka B (2015) Influence of mycorrhizal inoculation on growth of micropropagated Populus × canescens lines in metal-contaminated soils. New For 46(2):195–215CrossRefGoogle Scholar
  31. Bolan NS (1991) A critical review of the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207CrossRefGoogle Scholar
  32. Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498PubMedCrossRefGoogle Scholar
  33. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48PubMedCrossRefGoogle Scholar
  34. Bonfante-Fasolo P, Grippiolo R (1982) Ultrastructural and cytochemical changes in the wall of a vesicular-arbuscular mycorrhizal fungus during symbiosis. Can J Bot 60:2303–2312CrossRefGoogle Scholar
  35. Boroujeni DS, Hemmatinezhad B (2015) Review of application and importance of ectomycorrhiza fungi and their role in the stability of ecosystems. Biosci Biotechnol Res Asia 12(1):153–158CrossRefGoogle Scholar
  36. Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant–pathogen relations? Ecology 82:3057–3068Google Scholar
  37. Brelles-Marino GQ, Ane JM (2008) Nod factors and the molecular dialogue in the rhizobia–legume interaction. In: Couto GN (ed) Nitrogen fixation research progress. Nova Science, New York, pp 173–227Google Scholar
  38. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77CrossRefGoogle Scholar
  39. Bücking H, Liepold E, Ambilwade P (2012) The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. In: Dhal NK, Sahu SC (eds) Plant science. Intech, Rijeka. ISBN: 978-953-51-0905-1Google Scholar
  40. Callaham DA, Torrey JG (1981) The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can J Bot 59(9):1647–1664CrossRefGoogle Scholar
  41. Cárdenas L, Vidali L, Dominguez J, Perez H, Sánchez F, Hepler PK, Quinto C (1998) Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiol 116:871–877PubMedCentralCrossRefGoogle Scholar
  42. Cárdenas L, Feijo JA, Kunkel JG, Sánchez F, Holdaway-Clarke T, Hepler PK, Quinto C (1999) Rhizobium nod factors induce increases in intracllular free calcium and extracellular calcium influxes in bean root hairs. Plant J 19:347–352PubMedCrossRefGoogle Scholar
  43. Carlson RS, Kalembasa S, Tunoroski D, Packori P, Noel KD (1987) Characterization of the lipopolysaccharide from a Rhizobium phaseoli mutant that is defective in infection thread development. J Bacteriol 169:4923–4928PubMedPubMedCentralCrossRefGoogle Scholar
  44. Chen H, Richardson AE, Rolfe BG (1993) Studies on the physiological and genetic basis of acid tolerance in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 59:1798–1804PubMedPubMedCentralGoogle Scholar
  45. Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen nov. Int J Syst Bacteriol 38(4):392–397CrossRefGoogle Scholar
  46. Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512CrossRefPubMedGoogle Scholar
  47. Coninx L, Martinova V, Rineau F (2017) Mycorrhiza-assisted phytoremediation. In: Cuypers A, Vangronsveld J (eds) Phytoremediation, vol 83. Elsevier, Amsterdam, pp 127–188CrossRefGoogle Scholar
  48. Dangar TK, Basu PS (1987) Studies on plant growth substances, IAA metabolism and nitrogenase activity in root nodules of Phaseolus aureus Roxb.var. mungo. Biol Plant 29:350–354CrossRefGoogle Scholar
  49. Das A, Kamal S, Shakil Najam A, Sherameti I, Oelmuller R, Dua M, Tuteja N, Johri AK, Varma A (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav 7:1–10CrossRefGoogle Scholar
  50. Dazzo FB, Truchet GL, Sherwood JE, Hrabak EM, Abe M, Pankratz SH (1984) Specific phases of root hair attachment in the Rhizobium trifolii–clover symbiosis. Appl Environ Microbiol 48:1140–1150PubMedPubMedCentralGoogle Scholar
  51. De Mita (2007) Investigation of the demographic and selective forces shaping the nucleotide diversity of genes involved in nod factor signaling in Medicago truncatula. Genetics 177:2123–2133PubMedPubMedCentralCrossRefGoogle Scholar
  52. de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1998) Allorhizobium undicola gen nov, sp nov, nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290PubMedCrossRefGoogle Scholar
  53. Debelle F, Rosenberg C, Vasse J, Maillet F, Martinez E, Dénarie J, Truchet G (1986) Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic loci of Rhizobium meliloti. J Bacteriol 168:1075–1086PubMedPubMedCentralCrossRefGoogle Scholar
  54. Denarie J, Debelle F, Prome JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535PubMedCrossRefGoogle Scholar
  55. Deshmukh SD, Kogel KH (2007) Piriformospora indica protects barley from root rot caused by Fusarium graminearum. J Plant Dis Protect 114:263–268CrossRefGoogle Scholar
  56. Diaz CL, Van Spronsen PC, Bakhuizen R, Logman GJJ, Lugtenberg EJJ, Kijne JW (1986) Correlation between infection by Rhizobium leguminosarum and lectin on the surface of Pisum sativum roots. Planta 168:350–359PubMedCrossRefGoogle Scholar
  57. Diaz CL, Melchers LS, Hooykaas PJJ, Lugtenberg BJJ, Kijne JW (1989) Root lectin as a determinant of host-plant specificity in Rhizobium-legume symbiosis. Nature 338:579–581CrossRefGoogle Scholar
  58. Dighton J (2009) Mycorrhizae. In: Encyclopedia of microbiology, 3rd edn. Elsevier, SanDiegoCrossRefGoogle Scholar
  59. Dixon R, Kahn D (2004) Genetic regulation of biological nitogen fixation. Nat Rev Microbiol 2:621–631CrossRefPubMedGoogle Scholar
  60. Dobert RC, Breil BT, Triplett EW (1994) DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationships to those of other nodulating bacteria. Mol Plant-Microbe Interact 7:564–572PubMedCrossRefGoogle Scholar
  61. Dolatabadi HK, Goltapeh EM, Jaimand K, Rohani N, Varma A (2011) Effects of Piriformospora indica and Sebacina vermifera on growth and yield of essential oil in fennel (Foeniculum vulgare) under greenhouse conditions. J Basic Microbiol 51:33–39PubMedCrossRefGoogle Scholar
  62. Downie JA (2014) Legume nodulation. Curr Biol 24:184–190CrossRefGoogle Scholar
  63. Downie JA, Oldroyd GE (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576PubMedCrossRefGoogle Scholar
  64. Downie JA, Rossen L, Knight CD, Robertson JG, Wells B, Johnston AW (1985) Rhizobium leguminosarum genes involved in early stages of nodulation. J Cell Sci Suppl 2:347–354PubMedCrossRefGoogle Scholar
  65. Dreyfus BL, Dommergues YR (1981) Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 10:313–317CrossRefGoogle Scholar
  66. Dreyfus BL, Garcia J, Gillis M (1988) Characterization of Azorhizobium caulinodans gen nov sp nov, a stemnodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98CrossRefGoogle Scholar
  67. Dudley ME, Jacobs TW, Long SR (1987) Microscopic studies of cell divisions induced in alfalfa roots by Rhizobium meliloti. Planta 171:289–301PubMedCrossRefGoogle Scholar
  68. Durand TC, Baillif P, Albe’Ric P, Carpin S, Label P, Hausman JF, Morabito D (2011) Cadmium and zinc are differentially distributed in Populus tremula × P. alba exposed to metal excess. Plant Biosyst 145:397–405CrossRefGoogle Scholar
  69. Ehrhardt DW, Wais R, Long SR (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85:673–681PubMedCrossRefGoogle Scholar
  70. Eshel A, Beeckman T (2013) Plant roots: the hidden half, 4th edn. CRC Press, Boca RatonGoogle Scholar
  71. Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Büttner C, Grosch R, Schwarz D, Franken P (2009) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20:191–200PubMedCrossRefGoogle Scholar
  72. Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Buttner C, Grosch R, Schwarz D, Franken P (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20:191–200PubMedCrossRefGoogle Scholar
  73. Faucher C, Gamut S, Dénarie J, Truchet G (1989) The nodH and nodQ host range genes of Rhizobium meliloti behave as avirulence genes in R. leguminosarum bv viciae and determine changes in the production of plant-specific extracellular signals. Mol Plant Microbe Interact 2:291–300CrossRefGoogle Scholar
  74. Felle HH, Kondorosi E, Kondorosi A, Schultze M (1996) Rapid alkalization of root hairs in response to rhizobial lipochitooligosaccharide signals. Plant J 10:295–301CrossRefGoogle Scholar
  75. Felten J, Martin F, Legué V (2012) Signalling in ectomycorrhizal symbiosis. In: Perotto S, Baluška F (eds) Signaling and communication in plant symbiosis. Springer, Berlin, pp 123–142CrossRefGoogle Scholar
  76. Ferguson BJ (2013) Rhizobia and legume nodulation genes. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics. Academic, New York, pp 236–239CrossRefGoogle Scholar
  77. Fisher RF, Egelhoff TT, Mulligan JT, Long SR (1988) Specific binding of protein from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Dev 2:282–293PubMedCrossRefGoogle Scholar
  78. France RC, Reid CPP (1984) Pure culture growth of ectomycorrhizal fungi on inorganic nitrogen sources. Microb Ecol 10:187–195PubMedCrossRefGoogle Scholar
  79. Francisco PB, Akao S (1993) Autoregulation and nitrate inhibition of nodule formation in soybean cv Enrei and its nodulation mutants. J Exp Bot 44:547–553CrossRefGoogle Scholar
  80. Frank AB (1885) U ¨ ber die auf Würzelsymbiose beruhende Ehrna ¨hrung gewisser Ba ¨um durch unterirdische Pilze. Ber Deut Bot Ges (in German) 3:128–145Google Scholar
  81. Gagnon H, Ibrahim RK (1998) Aldonic acids: a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupini and Sinorhizobium meliloti. Mol Plant-Microbe Interact 11:988–998CrossRefGoogle Scholar
  82. Gamas P, Niebel FDC, Lescure N, Cullimore JV (1996) Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol Plant Microbe Interact 9:233–242PubMedCrossRefGoogle Scholar
  83. Garg R, Jain M (2013) Transcriptome analyses in legumes: a resource for functional genomics. Plant Genome 6.  https://doi.org/10.3835/plantgenome2013.04.0011
  84. Garg N, Geetanjali, Kaur A (2006) Arbuscular mycorrhiza: nutritional aspects. Arch Agron Soil Sci 52:593606CrossRefGoogle Scholar
  85. Gerdeman JW (1968) Vesicular- arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:297–418CrossRefGoogle Scholar
  86. Gerdemann JW, Trappe JM (1974) The Endogonaceae in the Pacific northwest. Mycol Mem 5:1–76Google Scholar
  87. Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei Joghan A (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106−114CrossRefGoogle Scholar
  88. Gianinazzi S, Trouvelot A, Lovato P, Van Tuinen D, Franken P, Gianinazzi-Pearson V (1995) Arbuscular mycorrhizal fungi in plant production of temperate agroecosystems. Crit Rev Biotechnol 15:305–311CrossRefGoogle Scholar
  89. Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530PubMedCrossRefGoogle Scholar
  90. Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biol Biochem 30(10-11):1389–1414CrossRefGoogle Scholar
  91. Goormachtig S, Alves-Ferreira M, Van Montagu M, Engler G, Holsters M (1997) Expression of cell cycle genes during Sesbania rostrata stem nodule development. Mol Plant Microbe Interact 10:316–325PubMedCrossRefGoogle Scholar
  92. Gordon AJ, Minchin FR, James CL, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120:867–878PubMedPubMedCentralCrossRefGoogle Scholar
  93. Goto BT, Silva GA, Assis DMA, Silva DKA, Souza RG, Ferreira ACA, Jobim K, Mello CMA, Vieira HEE, Maia LC, Oehl F (2012) Intraornatosporaceae (Gigasporales), a new family with two new genera and two new species. Mycotaxon 119:117–132CrossRefGoogle Scholar
  94. Granqvist E, Sun J, Op den Camp R, Pujic P, Hill L, Normand P, Oldroyd GED (2015) Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and non-legumes. New Phytol 207(3):551–558PubMedPubMedCentralCrossRefGoogle Scholar
  95. Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24:1276–1288PubMedCrossRefGoogle Scholar
  96. Hameed A, Egamberdieva D, Abd Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer Science, New York, pp 139–159CrossRefGoogle Scholar
  97. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  98. Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629CrossRefPubMedGoogle Scholar
  99. Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429PubMedPubMedCentralCrossRefGoogle Scholar
  100. Hasanuzzaman M, Fujita M, Islam MN, Ahamed KU, Nahar K (2009) Performance of four irrigated rice varieties under different levels of salinity stress. Int J Integr Biol 6:85–90Google Scholar
  101. Hasanuzzaman M, Gill SS, Fujita M (2013) Physiological role of nitric oxide in plants grown under adverse environmental conditions. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer Science, New York, pp 269–322CrossRefGoogle Scholar
  102. Hastwell AH, Gresshoff PM, Ferguson BJ (2015) The structure and activity of nodulation-suppressing CLE peptide hormones of legumes. Funct Plant Biol 42:229–238Google Scholar
  103. He X, Bledsoe CS, Zasoski RJ, Southworth D (2006) Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol 170(1):143–115PubMedCrossRefGoogle Scholar
  104. He JL, Li H, Luo J, Ma CF, Li SJ, Qu L, Gai Y, Jiang XN, Janz D, Polle A, Tyree M, Luo ZB (2013) A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus x canescens. Plant Physiol 162:424–439PubMedPubMedCentralCrossRefGoogle Scholar
  105. Heath KD, Tiffin P (2009) Stabilizing mechanisms in a legume-Rhizobium mutualism. Evolution 63:652–662PubMedCrossRefGoogle Scholar
  106. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133CrossRefPubMedGoogle Scholar
  107. Hirsch AM, McKhann HI, Reddy A, Liao JY, Fang YW, Marshall CR (1995) Assessing horizontal transfer of Nifhdk genes in eubacteria – nucleotide sequence of Nifk from Frankia strain Hfpcci3. Mol Biol Evol 12:16–27PubMedCrossRefGoogle Scholar
  108. Husaini AM, Abdin MZ, Khan S, Xu YW, Aquil S, Anis M (2012) Modifying strawberry for better adaptability to adverse impact of climate change. Curr Sci 102:1660–1673Google Scholar
  109. Jacobs PF, Peterson RL, Massicotte HB (1989) Altered fungal morphogenesis during early stages of ectomycorrhiza formation in Eucalyptus pilularis. Scanning Microsc 3:249–255Google Scholar
  110. Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-marel JC, Gillis M (1997) Transfer of Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tiashanense to Mesorhizobium gen. Nov. Int J Syst Bacteriol 47(3):895–898CrossRefGoogle Scholar
  111. Jeffries P, Barea JM (2012) Arbuscular mycorrhiza – a key component of sustainable plant-soil ecosystems. In: Hock B (ed) Fungal associations, The Mycota, vol IX, 2nd edn. Springer, Berlin, pp 51–75CrossRefGoogle Scholar
  112. Johnson JM, Alex T, Oelmüller R (2014) Piriformospora indica: the versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. J Trop Agric 52(2):103–122Google Scholar
  113. Jordan DC (1982) Transfer of Rhizobium japonicum to Bradyrhizobium gen nov, a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32(1):136–139CrossRefGoogle Scholar
  114. Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664PubMedPubMedCentralCrossRefGoogle Scholar
  115. Kabata-Pendias A, Mukherjee AB (2007) Trace element from soil to huma. Springer, Heidelberg, 550 pCrossRefGoogle Scholar
  116. Kamalvanshi M, Kumar A, Jha A, Dhyani SK (2012) Occurrence of arbuscular mycorrhizal fungi in rhizosphere of Jatropha curcas L. in arid and semi arid regions of India. Indian J Microbiol 52(3):492–494PubMedCrossRefGoogle Scholar
  117. Kapoor R, Evelin H, Giri B (2013) Arbuscular mycorrhiza approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer, New York, pp 359–401CrossRefGoogle Scholar
  118. Karimi A, Khodaverdilo H, Sepiheri M, Sadaghiani MR (2011) Arbuscular mycorrhizal fungi and heavy metal contaminated soil. Afr J Microbiol Res 5(13):1571–1576Google Scholar
  119. Kaschuk G, Leffelaar PA, Giller KE, Alberton O, Hungria M, Kuyper TW (2010) Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbioses. Soil Biol Biochem 42:125–127CrossRefGoogle Scholar
  120. Kaur R, Singh A, Kang JS (2014) Influence of different types mycorrhizal fungi on crop productivity. Curr Agric Res 2(1):51–54CrossRefGoogle Scholar
  121. Keller C, McGrath SP, Dunham SJ (2002) Trace metal leaching through a soil–grassland system after sewage sludge application. J Environ Qual 31:1550–1560PubMedCrossRefGoogle Scholar
  122. Khodaverdiloo H, Samadi A (2011) Batch equilibrium study on sorption, desorption, and immobilization of cadmium in some semiarid-zone soils as affected by soil properties. Soil Res 49(5):444–454CrossRefGoogle Scholar
  123. Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81PubMedCrossRefGoogle Scholar
  124. Kijne JW, Pluvque K (1979) Ultrastructural study of the endomembrane system in infected cells of pea and soybean root nodules. Physiol Plant Pathol 14:339–345CrossRefGoogle Scholar
  125. Kistner C, Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7:511–518PubMedCrossRefGoogle Scholar
  126. Kondorosi E, Banfalvi Z, Kondorosi A (1984) Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: identification of nodulation genes. Mol Gen Genet 193:445–452CrossRefGoogle Scholar
  127. Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci 84:7428–7432PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ladha JK, Pareek RP, Becker M (1992) Stem-nodulating legume-Rhizobium symbiosis and its agronomic use in lowland rice. Adv Soil Sci 20:147–192CrossRefGoogle Scholar
  129. Laloum T, Baudin M, Frances L, Lepage A, Billault-Penneteau B, Cerri MR (2014) Two CCAAT box-binding transcription factors redundantly regulate early steps of the legume-rhizobia endosymbiosis. Plant J 79:757–768PubMedCrossRefGoogle Scholar
  130. Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in mixed Central European forest. Mycorrhiza 21:297–308PubMedCrossRefGoogle Scholar
  131. Le Strange KK, Bender GL, Djordjevic MA, Rolfe BG, Redmond JW (1990) The Rhizobium strain NGR234 nodD1 gene product responds to activation by simple phenolic compounds vanillin and isovanillin present in wheat seedling extracts. Mol Plant Microbe Interact 3:214–220CrossRefGoogle Scholar
  132. Lee BR, Muneer S, Avice JC, Jin Jung W, Kim TH (2012) Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza 22:525–534PubMedCrossRefGoogle Scholar
  133. Legocki RP, Verma DP (1980) Identification of “nodule-specific” host proteins (nodulins) involved in the development of Rhizobium-legume symbiosis. Cell 20(1):153–163PubMedCrossRefGoogle Scholar
  134. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784PubMedCrossRefGoogle Scholar
  135. Libbenga KR, Harkes PAA (1973) Initial proliferation of cortical cells in the formation of root nodules in Pisum sativum L. Planta 114:17–28PubMedCrossRefGoogle Scholar
  136. Lipsanen P, Lindström K (1988) Infection and root nodule structure in the Rhizobium galegae sp nov-Galega sp symbiosis. Symbiosis 6:81–96Google Scholar
  137. Lum MR, Hirsch AM (2003) Roots and their symbiotic microbes: strategies to obtain nitrogen and phosphorus in a nutrientlimiting environment. J Plant Growth Regul 21:368–382CrossRefGoogle Scholar
  138. Luo ZB, Janz D, Jiang X, Göbel C, Wildhagen H, Tan Y, Rennenberg H, Feussner I, Polle A (2009) Upgrading root physiology for stress tolerance by ectomycorrhizas: Insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol 151(4):1902–1917PubMedPubMedCentralCrossRefGoogle Scholar
  139. Luo ZB, Wu C, Zhang C, Li H, Lipka U, Polle A (2014) The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environ Exp Bot 108:47–62CrossRefGoogle Scholar
  140. Mabood F, Souleimanov A, Khan W, Smith DL (2006) Jasmonates induce Nod factor production by Bradyrhizobium japonicum. Plant Physiol Biochem 44:759–765PubMedCrossRefGoogle Scholar
  141. Manchanda G, Garg N (2007) Endomycorrhizal and rhizobial symbiosis: how much do they share? J Plant Interact 2(2):7988CrossRefGoogle Scholar
  142. Manoharachary C, Laxami AN, Kunwar AK (2000) Microbial ecology of polluted soil: some aspects. In: Mukerji KG, Chamola BP, Sharma AK (eds) Glimpses in botany. APH, New Delhi, pp 314–325Google Scholar
  143. Manoharachary C, Kunwar IK, Mukerji KG (2002) Some aspects of monotropoid mycorrhizas. In: Mukerji KG et al (eds) Techniques in mycorrhizal studies. Kluwer Academic, Drodrecht, pp 435–441CrossRefGoogle Scholar
  144. Marinho F, Silva GA, Ferreira ACA, Veras JSN, Sousa NMF, Goto BT, Maia LC, Oehl F (2014) Bulbospora minima, new genus and new species in the Glomeromycetes from semi-arid Northeast Brazil. Sydowia 66:313–323Google Scholar
  145. Martin KJ (2007) Introduction to molecular analysis of ectomycorrhizal communities. Soil Sci Soc Am J 71:601–610CrossRefGoogle Scholar
  146. Martinez E, Puopot R, Prome JC, Pardo MA, Segovia L, Truchet G, Denarie J (1993) Chemical signaling of Rhizobium nodulating bean. In: Palacios R, Mora J, Newton WE (eds) New horizons in nitrogen fixation. Kluwer Academic, Dordrecht, pp 171–176CrossRefGoogle Scholar
  147. Marvel DJ, Torrey JG, Ausubel FM (1987) Rhizobium symbiotic genes required for nodulation of legume and nonlegume hosts. Proc Natl Acad Sci 84(5):1319–1323PubMedPubMedCentralCrossRefGoogle Scholar
  148. Marx J (2004) The roots of plant-microbe collaborations. Science 304:234–236PubMedCrossRefGoogle Scholar
  149. Massicotte HB, Ackerley CA, Peterson RL (1987) The root-fungus interface as a indicator of symbiont interaction in ectomycorrhizae. Can J Forest Res 17:846–854CrossRefGoogle Scholar
  150. Mathur N, Singh J, Bohra S, Vyas A (2007) Arbuscular mycorrhizal status of medicinal halophytes in saline areas of Indian Thar Desert. Int J Soil Sci 2:119–127CrossRefGoogle Scholar
  151. Medina J, Cornejo P, Borie F, Meyer S, Palenzuela J, Vieira HEE, Ferreira ACA, Silva GA, Sánchez-Castro I, Oehl F (2014) Corymbiglomus pacificum, a new glomeromycete from a saline lakeshore in Chile. Mycotaxon 127:173–183CrossRefGoogle Scholar
  152. Miyasaka SC, Habte M, Friday JB, Johnson EV (2003) Manual on arbuscular mycorrhizal fungus production and inoculation techniques. Soil Crop Manage 5:4Google Scholar
  153. Molina R, Trappe JM (1982) Lack of mycorrhizal specificity by the ericaceous hosts Arbutus menziesii and Arctostaphylos uva-ursi. New Phytol 90:495–509CrossRefGoogle Scholar
  154. Monika A, Gorzelak AKA, Pickles BJ, Suzanne WS (2015) Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB Plants 2:7Google Scholar
  155. Moore D, Robson GD, Anthony TAPJ (2011) 21st Century guidebook to fungi. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  156. Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491Google Scholar
  157. Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195CrossRefGoogle Scholar
  158. Newcomb W (1979) Control of morphogenesis and differentiation of pea root nodules. In: Newton WE, Orme-Johnson WH (eds) Nitrogen fixation symbiotic associations and cyanobacteria, vol 2. University Park Press, Baltimore, pp 87–102Google Scholar
  159. Noe R, Hammerstein P (1994) Biological markets–supply-and-demand determine the effect of partner choice in cooperation, mutualism and mating. Behav Ecol Sociobiol 35:1–11CrossRefGoogle Scholar
  160. Noel KD, Vanden Bosch KA, Kulpaca B (1986) Mutations in Rhizobium phaseoli that lead to arrested development of infection threads. J Bacteriol 168:1392–1401PubMedPubMedCentralCrossRefGoogle Scholar
  161. Nuti MP, Lepidi AA, Prakash RK, Schilperoort RA, Cannon FC (1979) Evidence for nitrogen fixation (nif) genes on indigenous Rhizobium plasmids. Nature 282:533–535CrossRefGoogle Scholar
  162. Oehl F, Souza F, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza forming Glomeromycetes. Mycotaxon 106:311–360Google Scholar
  163. Oehl F, Silva GA, Goto BT, Maia LC, Sieverding E (2011a) Glomeromycota: two new classes and a new order. Mycotaxon 116:365–379CrossRefGoogle Scholar
  164. Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves da Silva G (2011b) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2(2):191–199PubMedPubMedCentralCrossRefGoogle Scholar
  165. Oehl F, Sánchez-Castro I, Palenzuela J, Silva GA (2015) Palaeospora spainii, a new arbuscular mycorrhizal fungus from Swiss agricultural soils. Nova Hedwigia 101:89–102CrossRefGoogle Scholar
  166. Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17CrossRefGoogle Scholar
  167. Oke V, Long SR (1999) Bacteroid formation in the Rhizobium-legume-symbiosis. Curr Opin Microbiol 2:641–646PubMedCrossRefGoogle Scholar
  168. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546PubMedCrossRefGoogle Scholar
  169. Ott T, van Dongen JT, Günther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15:531–535PubMedCrossRefGoogle Scholar
  170. Pagano MC, Oehl F, Silva, GA, Maia LC, Silva DK, Cabello MN (2016) Advances in arbuscular mycorrhizal taxonomy. In: Pagano M (ed) Recent advances on mycorrhizal fungi. Fungal biology. Springer, ChamCrossRefGoogle Scholar
  171. Palenzuela J, Ferrol N, Boller T, Azcón-Aguilar C, Oehl F (2008) Otospora bareai, a new fungal species in the Glomeromycetes from a dolomitic shrub-land in the National Park of Sierra de Baza (Granada, Spain). Mycologia 100:282–291CrossRefGoogle Scholar
  172. Pandolfini T, Gremigni P, Gabbrielli R (1997) Biomonitoring of soil health by plants. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, New York, pp 325–347Google Scholar
  173. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  174. Peng G, Yuan Q, Li H, Zhang W, Tan Z (2008) Rhizobium oryzae sp nov, isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58:2158–2163PubMedCrossRefGoogle Scholar
  175. Peskan-Berghofer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A, Oelmuller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122:465–477CrossRefGoogle Scholar
  176. Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980PubMedCrossRefGoogle Scholar
  177. Pham GH, Kumari R, Singh A, Sachdev M, Prasad R, Kaldorf M, Buscot F, Oelmüller R, Tatjana P, Weiss M, Hampp R, Varma A (2004) Axenic cultures of Piriformospora indica. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Heidelberg, pp 593–616Google Scholar
  178. Phillips DA (1971) Abscisic acid inhibition of root nodule initiation in Pisum sativum. Planta 100:181–190PubMedCrossRefGoogle Scholar
  179. Phillips DA, Torrey JG (1970) Cytokinin production by Rhizobium japonicum. Physiol Plant 23:1057–1063CrossRefGoogle Scholar
  180. Pontes JS, Sánchez-Castro I, Palenzuela J, Maia LC, Silva GA, Oehl F (2013) Scutellospora alterata, a new gigasporalean species from the semi-arid Caatinga biome in Northeastern Brazil. Mycotaxon 125:169–181CrossRefGoogle Scholar
  181. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315PubMedCrossRefGoogle Scholar
  182. Pozo MJ, Azcón-Aguilar C (2007) Unravelling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398PubMedPubMedCentralCrossRefGoogle Scholar
  183. Prakash RK, Schilperoort RA, Nuti MP (1981) Large plasmids of fast-growing rhizobia: homology studies and location of structural nitrogen fixation (nif) genes. J Bacteriol 145:1129PubMedPubMedCentralGoogle Scholar
  184. Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R (2013) Hydrogen peroxide and nitric oxide: key regulators of the legume Rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 18:2202–2219PubMedCrossRefGoogle Scholar
  185. Qiang X, Weiss M, Kogel KH, Schäfer P (2011) Piriformospora indica – a mutualistic basidiomycete with an exceptionally large plant host range. Mol Plant Pathol 13:508–518PubMedCrossRefGoogle Scholar
  186. Rae AL, Bonfante-Fasolo P, Brewin NJ (1992) Structure and growth of infection threads in the legume symbiosis with Rhizobium leguminosarum. Plant J 2:385–395CrossRefGoogle Scholar
  187. Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128PubMedCrossRefGoogle Scholar
  188. Ray JG, Valsalakumar N (2010) Arbuscular mycorrhizal fungi and Piriformospora indica individually and in combination with Rhizobium on green gram. J Plant Nutr 33:285–298CrossRefGoogle Scholar
  189. Raziuddin F, Hassan G, Akmal M, Shah SS, Mohammad F, Shafi M, Bakht J, Zhou W (2011) Effects of cadmium and salinity on growth and photosynthesis parameters of Brassica species. Pak J Bot 43(1):333–340Google Scholar
  190. Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–374CrossRefGoogle Scholar
  191. Read DJ, Duckett JG, Francis R, Ligrone R, Russel A (2000a) Symbiotic fungal associations in “lower” land plants. Philos Trans R Soc Biol Sci 355:815–831CrossRefGoogle Scholar
  192. Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000b) Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B Biol Sci 355:815–830PubMedPubMedCentralCrossRefGoogle Scholar
  193. Redecker D, Schüßler A (2014) Glomeromycota. In: Mclaughlin DJ, Spatafora JW (eds) The Mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research, systematics and evolution Part A. Springer, New YorkGoogle Scholar
  194. Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635CrossRefGoogle Scholar
  195. Reid DE, Ferguson BJ, Hayashi S, Lin YH, Gresshoff PM (2011) Molecular mechanisms controlling legume autoregulation of nodulation. Ann Bot 108:789–795PubMedPubMedCentralCrossRefGoogle Scholar
  196. Rhijn V, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142PubMedPubMedCentralGoogle Scholar
  197. Rhijn V, Feys PJS, Verreth BC, Vanderleyden J (1993) Multiple copies of nodD in Rhizobium tropici CIAT899 and BR816. J Bacteriol 175:438–447PubMedPubMedCentralCrossRefGoogle Scholar
  198. Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45Google Scholar
  199. Rosas JC, Castro JA, Robleto EA, Handelsman J (1998) A method for screening Phaseolus vulgaris L germplasm for preferential nodulation with a selected Rhizobium etli strain. Plant Soil 203:71–78CrossRefGoogle Scholar
  200. Rosenberg C, Boistard P, Denarie J, Casse-Delbart F (1981) Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol Gen Genet 184:326–333PubMedGoogle Scholar
  201. Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266PubMedCrossRefGoogle Scholar
  202. Rossen L, Shearman CA, Johnston AWB, Downie JA (1985) The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodA,B,C genes. EMBO J 4:3369–3373PubMedPubMedCentralCrossRefGoogle Scholar
  203. Rostas K, Kondorosi E, Horvath B, Simoncsits A, Kondorosi A (1986) Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc Natl Acad Sci 83:1757–1761PubMedPubMedCentralCrossRefGoogle Scholar
  204. Roth LE, Stacey G (1989) Bacterium release into host cells of nitrogen-fixing soybean nodules: the symbiosome membrane comes from three sources. Eur J Cell Biol 49(1):13–23PubMedGoogle Scholar
  205. Roth LE, Jeon K, Stacey G (1988) Homology in endosymbiotic systems. In: Palcios R, Verma DPS, St Paul MN (eds) The term “symbiosome”. Molecular genetics of plant microbe interactions. ADS Press, St Paul, pp 220–225Google Scholar
  206. Rozahon M, Ismayil N, Hamood B, Erkin R, Abdurahman M, Mamtimin H, Abdukerim M, La R, Rahman E (2014) Rhizobiun populi sp. nov., an endophytic bacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 64:3215–3221PubMedCrossRefGoogle Scholar
  207. Salminen SO, Streeter JG (1992) Labeling of carbon pools in Bradyrhizobium japonicum and Rhizobium leguminosarum bv viciae bacteroids following incubation of intact nodules with 14CO2. Plant Physiol 100:597–604PubMedPubMedCentralCrossRefGoogle Scholar
  208. Sandeep C, Mohanb V, Viswanatha S (2015) Significance of ectomycorrhizae in forest ecosystems of India. Int J Plant Anim Environ Sci 5:23–31Google Scholar
  209. Sanders IR, Croll D (2010) Arbuscular mycorrhiza: a challenge to understand the genetics of the fungal partner. Ann Rev Genet 44:271–292PubMedCrossRefGoogle Scholar
  210. Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280PubMedPubMedCentralCrossRefGoogle Scholar
  211. Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Published in libraries at The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State UniversityGoogle Scholar
  212. Schüßler A, Walker C (2011) Evolution of the plant symbiotic fungal phylum, Glomeromycota. In: Poggeler S, Wostemeyer J (eds) Evolution of fungi and fungal-like organisms. Springer, Berlin, pp 163–185CrossRefGoogle Scholar
  213. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  214. Schüßler A, Krüger M, Walker C (2009) Phylogeny, evolution and origin of the ‘plant-symbiotic’ phylum Glomeromycota. In: Wöstemeyer J, Martin W (eds) The Mycota XIV – evolution of fungi and fungal-like organisms. Springer, BerlinGoogle Scholar
  215. Selosse MA, Setaro S, Glatard F, Richard F, Urecelay C, Weiss M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878PubMedCrossRefGoogle Scholar
  216. Sethi IK, Walia SK (2018) Text book of Fungi and their allies, 2nd edn. Scientific International, New DelhiGoogle Scholar
  217. Sharifi E (1983) Parasitic origins of nitrogen-fixing Rhizobium-legume symbioses: a review of the evidence. Biosystems 16:269–289PubMedCrossRefGoogle Scholar
  218. Sherameti I, Tripathi S, Varma A, Oelmuller R (2008) The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Interact 21:799–807PubMedCrossRefGoogle Scholar
  219. Sieberer BJ, Timmers AC, Emons AM (2005) Nod factors alter the microtubule cytoskeleton in Medicago truncatula root hairs to allow root hair reorientation. Mol Plant Microbe Interact 18:1195–1204PubMedCrossRefGoogle Scholar
  220. Sieverding E, Silva GA, Berndt R, Oehl F (2014) Rhizoglomus, a new genus in the Glomeraceae. Mycotaxon 129:373–386CrossRefGoogle Scholar
  221. Silva GA, Maia LC, Oehl F (2012) Phylogenetic systematics of the Gigasporales. Mycotaxon 122:207–222CrossRefGoogle Scholar
  222. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69CrossRefGoogle Scholar
  223. Singh A, Varma A (2000) Orchidaceous mycorrhizal fungi. In: Mukerji KG (ed) Mycorrhizal biology. Kluwer Academic/Plenum, New York, pp 265–288CrossRefGoogle Scholar
  224. Singh A, Sharma J, Rexer KH, Varma A (2000) Plant productivity determinants beyond minerals, water and light. Piriformospora indica: a revolutionary plant growth promoting fungus. Curr Sci 79:101–106Google Scholar
  225. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San DiegoGoogle Scholar
  226. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  227. Smith SE, Smith AF, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20PubMedPubMedCentralCrossRefGoogle Scholar
  228. Spain JL, Sieverding E, Oehl F (2006) Appendicispora, a new genus in the arbuscular mycorrhizal-forming Glomeromycetes, with a discussion of the genus Archaeospora. Mycotaxon 97:163–182Google Scholar
  229. Spaink HP, Okker RJH, Wijffelman CA, Pees E, Lugtenberg BJJ (1987) Promoters in nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1Jl. Plant Mol Biol 9:29–37CrossRefGoogle Scholar
  230. Sprent (1980) Root nodule anatomy, type of export product and evolutionary origin of some Leguminosae. Plant Cell Environ 3:35–43Google Scholar
  231. Srivastava D, Kapoor R, Srivastava SK, Mukerji KG (1996) Vesicular arbuscular mycorrhiza-an overview. In: Mukerji KG (ed) Concepts in mycorrhizal research, vol 813. Kluwer Academic, Dordrecht, pp 1–39Google Scholar
  232. Sudha KH, Narula A, Kumar S, Srivastava PS, Varma A (1999) Mycorrhiza aided biological hardening of in vitro raised plantlets. In: Tewari JP, Lakhanpal TN, Singh J, Gupta R, Chamola BP (eds) Advances in microbial biotechnology. APH, Delhi, pp 469–485Google Scholar
  233. Sun CA, Johnson J, Cai DG, Sherameti I, Oelmuller R, Lou BG (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017PubMedCrossRefGoogle Scholar
  234. Szuba A, Karliński L, Krzesłowska M, Hazubska-Przybył T (2017) Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus × canescens under in vitro conditions. Plant Soil 412(1–2):253–266CrossRefGoogle Scholar
  235. Tedersoo L, Nara K (2010) General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol 185:351–354PubMedCrossRefGoogle Scholar
  236. Thamer S, Schädler M, Bonte D, Ballhorn DJ (2011) Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil 34:1209–1219Google Scholar
  237. Tillard P, Drevon JJ (1988) Nodulation and nitrogenase activity of chickpea cultivar INRA199 inoculated with different strains of Rhizobium ciceri. Agronomie 8:387–392CrossRefGoogle Scholar
  238. Torok I, Kondorosi E, Stepkowski T, Pósfai J, Kondorosi A (1984) Nucleotide sequence of Rhizobium meliloti nodulation genes. Nucleic Acids Res 12(24):9509–9524PubMedPubMedCentralCrossRefGoogle Scholar
  239. Torres-Cortes G, Ghignone S, Bonfante P, Schüßler A (2015) Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: transkingdom gene transfer in an ancient mycoplasma-fungus association. Proc Natl Acad Sci U S A 112(25):7785–7790PubMedPubMedCentralCrossRefGoogle Scholar
  240. Trinchant JC, Rigaud J (1989) Alternative energy-yielding substrates for bacteroids isolated from stem and root nodules of Sesbania rostrata submitted to O2 restricted conditions. Plant Sci 59:141–149CrossRefGoogle Scholar
  241. Trinick MJ (1979) Structure of nitrogen-fixing nodules formed by Rhizobium on roots of Parasponia andersonii Planch. Can J Microbiol 25:565–578PubMedCrossRefGoogle Scholar
  242. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, de Billy F, Promé JC, Dénarié J (1991) Sulphated lipooligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfafa. Nature 351:670–673CrossRefGoogle Scholar
  243. Tu JC (1977) Structural organization of the rhizobial root nodule of alfalfa. Can J Bot 55:35–43CrossRefGoogle Scholar
  244. Turk MA, Asaf TA, Hameed KM, Al-Tawaha AM (2006) Significance of mycorrhizae. World J Agric Sci 2(1):16–20Google Scholar
  245. Udvardi MK, Day DA (1990) Ammonia (’4C-methylamine) transport across the bacteroid and peribacteroid membranes of soybean root nodules. Plant Physiol 94:71–76PubMedPubMedCentralCrossRefGoogle Scholar
  246. Udvardi MK, Day DA (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 48:493–523CrossRefPubMedGoogle Scholar
  247. Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805CrossRefPubMedGoogle Scholar
  248. Unnikumar KR, Sowjanya SK, Varma A (2013) Piriformospora indica: a versatile root endophytic symbiont. Symbiosis 60:107–113CrossRefGoogle Scholar
  249. Van Brussel AAN, Bakhulzen R, Van Spronsen PC, Spaink HP, Tak T, Lugtenberg BJJ, Keijne JW (1992) Induction of pre-infection thread structures in the host plant by lipo-oligosaccharides of Rhizobium. Science 257:70–72PubMedCrossRefGoogle Scholar
  250. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310CrossRefGoogle Scholar
  251. Vandenbosch KA, Noel KD, Kaneko Y, Newcomb EH (1985) Nodule initiation elicited by noninfective mutants of Rhizobium phaseoli. J Bacteriol 162(3):950–959PubMedPubMedCentralGoogle Scholar
  252. Varma A, Verma S, Sudha SN, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65(6):2741–2744PubMedPubMedCentralGoogle Scholar
  253. Varma A, Singh A, Sudha M, Sahay NS, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: a cultivable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) The Mycota IX. Springer, Berlin, pp 125–150Google Scholar
  254. Varma A, Bakshi M, Lou B, Hartmann B, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117.  https://doi.org/10.1007/s40003-012-0019-5 CrossRefGoogle Scholar
  255. Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–216PubMedCrossRefGoogle Scholar
  256. Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:898–905CrossRefGoogle Scholar
  257. Vierheilig H, Lerat S, Piché Y (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Mycorrhiza 13:167–170PubMedCrossRefGoogle Scholar
  258. Vierheilig H, Schweigerb P, Brundrettc M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393–404Google Scholar
  259. Voegelin A, Barmettler K, Kretzschmar R (2003) Heavy metal release from contaminated soils: comparison of column leaching and batch extraction results. J Environ Qual 32:865–875PubMedCrossRefGoogle Scholar
  260. Walker C (1992) Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomales)-a possible way forward. Agronomie 12:887–897CrossRefGoogle Scholar
  261. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391PubMedPubMedCentralCrossRefGoogle Scholar
  262. Wang W, Qui YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5):299–363CrossRefPubMedGoogle Scholar
  263. Weiβ M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1002–1010Google Scholar
  264. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227CrossRefGoogle Scholar
  265. Williams PM, Mallorca MS (1982) Abscisic acid and gibberellin-like substances in roots and root nodules of Glycine max. Plant Soil 65:19–26CrossRefGoogle Scholar
  266. Wilson GWT, Hartnett DC, Rice WC (2006) Mycorrhizal-mediated phosphorus transfer between tallgrass prairie plants Sorghastrum nutans and Artemisia ludoviciana. Funct Ecol 20:427–435CrossRefGoogle Scholar
  267. Wu QS, Xia RX (2003) Research and application on vesicular-arbuscular mycorrhiza of fruit trees. Plant Physiol Commun 39:536–540Google Scholar
  268. Wu QS, Xia SR (2004) The relation between vesicular -arbuscular mycorrhizae and water metabolism in plants. Chin Agric Sci Bull 1:188–192Google Scholar
  269. Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285:26532–26544PubMedPubMedCentralCrossRefGoogle Scholar
  270. Zaat SAJ, Wijffelman CA, Spaink HP, van Brussel AAN, Okker RJH, Lugtenberg BJJ (1987) Induction of the nodA promoter of Rhizobium leguminosarum sym plasmid pRL1JI by plant flavanones and flavones. J Bacteriol 169:198–204PubMedPubMedCentralCrossRefGoogle Scholar
  271. Zahran HH (1999) Rhizobium-Legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 3(4):968–989Google Scholar
  272. Zarea MJ, Hajinia S, Karimi N, Goltapeh EM, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–146CrossRefGoogle Scholar
  273. Zhang XX, Sun L, Ma XT, Sui XH, Jiang RB (2011) Rhizobium pseudoryzae sp. nov., isolated from the rhizosphere of rice. Int J Syst Evol Microbiol 61:2425–2429PubMedCrossRefGoogle Scholar
  274. Zhang YJ, Zheng WT, Everall I, Young JP, Zhang XX (2015) Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int J Syst Evol Microbiol 65:2960–2967PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Surinder Kaur
    • 1
  • Gurpreet Kaur
    • 1
  1. 1.Department of Botany, SGTB Khalsa CollegeUniversity of DelhiDelhiIndia

Personalised recommendations