Advertisement

Root Biology pp 323-339 | Cite as

Root–Microbe Interactions: Understanding and Exploitation of Microbiome

  • Amita Sharma
  • Rajnish Kumar Verma
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 52)

Abstract

The research related to belowground ecology is a fascinating field and gaining immense attention currently. A multitude of interactions operating in the rhizosphere has been revealed by recent boom in the studies exploring the underlying mechanism of the communications between plant and microbial communities. These interactions are mediated by root exudates released by plant roots controlling numerous ecological processes. The ecological functions based on root-microbe interactions include nutrient cycling, decomposition, and maintenance of soil structure, disease suppression, bioremediation, biomass production, soil carbon sequestration and regulation of microbial communities. A greater understanding of these root-microbe interactions is strongly required to exploit the soil microbiota for plant development from applied perspective.

Keywords

Rhizosphere Root–microbe interactions Rhizodeposition PGPR Mycorrhizal fungi 

References

  1. Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7:636–641.  https://doi.org/10.4161/psb.20039 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alavi P, Starcher MR, Zachow C, Müller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front Plant Sci 4:141CrossRefGoogle Scholar
  3. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681.  https://doi.org/10.1111/j.1365-3040.2009.01926.x CrossRefPubMedGoogle Scholar
  4. Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013a) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512.  https://doi.org/10.1074/jbc.M112.433300 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013b) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198:264–273.  https://doi.org/10.1111/nph.12124 CrossRefGoogle Scholar
  6. Baetz U (2016) Root exudates as integral part of belowground plant defence. In: CNF V, Kazan K (eds) Belowground defence strategies in plants. Springer, Berlin, pp 45–67.  https://doi.org/10.1007/978-3-319-42319-7_3 CrossRefGoogle Scholar
  7. Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98.  https://doi.org/10.1016/j.tplants.2013.11.006 CrossRefPubMedGoogle Scholar
  8. Bakker M, Manter D, Sheflin A, Weir T, Vivanco J (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13.  https://doi.org/10.1007/s11104-012-1361-x CrossRefGoogle Scholar
  9. Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton Leeuw 81:343–335CrossRefGoogle Scholar
  10. Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual framework and empirical tests. New Phytol 157:465–473CrossRefGoogle Scholar
  11. Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46:7–21CrossRefGoogle Scholar
  12. Bonkowski M, Villenage C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233CrossRefGoogle Scholar
  13. Bouwmeester HJ, Roux C, López Ráez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230.  https://doi.org/10.1016/j.tplants.2007.03.009 CrossRefPubMedGoogle Scholar
  14. Cai T, Cai W, Zhang J, Zheng H, Tsou AM, Xiao L, Zhong Z, Zhu J (2009) Host legume-exuded antimetabolites optimize the symbiotic rhizosphere. Mol Microbiol 73:507–517.  https://doi.org/10.1111/j.1365-2958.2009.06790.x CrossRefPubMedGoogle Scholar
  15. Cannesan MA, Durand C, Burel C, Gangneux C, Lerouge P, Ishii T, Laval K, Follet-Gueye ML, Driouich A, Vicré-Gibouin M (2012) Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination. Plant Physiol 159:1658–1670.  https://doi.org/10.1104/pp.112.198507 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cardinale M (2014) Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Front Microbiol 5:94.  https://doi.org/10.3389/fmicb.2014.00094 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D, Kierul K, Becker A, Wiren N, Borriss R, Baxter I (2013) Linking plant nutritional status to plant-microbe interactions. PLoS One 8(7):e68555CrossRefGoogle Scholar
  18. Chaparro J, Sheflin A, Manter D, Vivanco J (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499.  https://doi.org/10.1007/s00374-012-0691-4 CrossRefGoogle Scholar
  19. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731.  https://doi.org/10.1371/journal.pone CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020.  https://doi.org/10.3389/fpls.2015.01020 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chomel M, Guittonny-Larchevêque M, Fernandez C, Gallet C, Des Rochers A, Paré D, Jackson BG, Baldy V (2016) Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. J Ecol 104:1527–1541.  https://doi.org/10.1111/1365-2745.12644 CrossRefGoogle Scholar
  22. Cocking EC (2003) Endophytic colonisation of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175CrossRefGoogle Scholar
  23. Cordero OX, Datta MS (2016) Microbial interactions and community assembly at microscales. Curr Opin Microbiol 31:227–234CrossRefGoogle Scholar
  24. De Hoff P, Brill L, Hirsch A (2009) Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 282:1–15.  https://doi.org/10.1007/s00438-009-0460-8 CrossRefPubMedPubMedCentralGoogle Scholar
  25. De-la-Pena C, Vivanco JM (2010) Root-microbe interactions: the importance of protein secretion. Curr Proteonomics 7:265–274CrossRefGoogle Scholar
  26. De-la-Pena C, Badri DV, Lei Z, Watson BS, Brandão MM, Silva-Filho MC, Sumner LW, Vivanco JM (2010) Root secretion of defense-related proteins is development-dependent and correlated with flowering time. J Biol Chem 285:30654–30666CrossRefGoogle Scholar
  27. Dighton J (2014) Introduction: soils and their promotion of plant growth. In: Dighton J, Krumins JA (eds) Interactions in soil: promoting plant growth, biodiversity, community and ecosystems. Springer, Berlin, pp 1–26.  https://doi.org/10.1007/978-94-017-8890-8_1 CrossRefGoogle Scholar
  28. Fang W, St. Leger RJ (2010) Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiol 154:1549–1557.  https://doi.org/10.1104/pp.110.163014 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fang C, Zhuang Y, Xu T, Li Y, Li Y, Lin W (2013) Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine ammonia-lyase gene expression. J Chem Ecol 39:204–212.  https://doi.org/10.1007/s10886-013-0249-4 CrossRefGoogle Scholar
  30. Finkel OM, Castrillo G, Paredes SH, González IS, Dang JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163CrossRefGoogle Scholar
  31. Gao X, Wu M, Xu R, Wang X, Pan R, Kim H-J, Liao H (2014) Root interactions in a Maize/Soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS One 9(5):e95031.  https://doi.org/10.1371/journal.pone.0095031 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gera Hol WH, de Boer W, Medina A (2014) Beneficial interactions in the rhizosphere. In: Dighton J, Krumins JA (eds) Interactions in soil: promoting plant growth, biodiversity, community and ecosystems 1. Springer, Berlin, pp 59–80.  https://doi.org/10.1007/978-94-017-8890-8_3 CrossRefGoogle Scholar
  33. Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56CrossRefGoogle Scholar
  34. Havlicek E, Mitchell EAD (2014) Soils supporting biodiversity. In: Dighton J, Krumins JA (eds) Interactions in soil: promoting plant growth, biodiversity, community and ecosystems. Springer, Berlin, pp 27–58.  https://doi.org/10.1007/978-94-017-8890-8_2 CrossRefGoogle Scholar
  35. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598.  https://doi.org/10.1007/s13213-010-0117-1 CrossRefGoogle Scholar
  36. Houlden A, Timms-Wilson TM, Day MJ, Bailey MJ (2008) Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol Ecol 65(2):193–201.  https://doi.org/10.1111/j.1574-6941.2008.00535.x CrossRefGoogle Scholar
  37. Johnson SN, Rasmann S (2015) Root-feeding insects and their interactions with organisms in the rhizosphere. Annu Rev Entomol 60:517–535CrossRefGoogle Scholar
  38. Johnson SN, Erb M, Hartley SE (2016) Roots under attack: contrasting plant responses to below- and aboveground insect herbivory. New Phytol 210:413–418CrossRefGoogle Scholar
  39. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480.  https://doi.org/10.1111/j.1469-8137.2004.01130.x CrossRefGoogle Scholar
  40. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882.  https://doi.org/10.1126/science.1208473 CrossRefGoogle Scholar
  41. Krumins JA (2014) The positive effects of trophic interactions in soil. In: Dighton J, Krumins JA (eds) Interactions in soil: promoting plant growth, biodiversity, community and ecosystems 1. Springer, Berlin, pp 81–94.  https://doi.org/10.1007/978-94-017-8890-8_4 CrossRefGoogle Scholar
  42. Kumar AS, Lakshmanan V, Caplan JL, Powell D, Czymmek KJ, Levia DF, Bais HP (2012) Rhizobacteria Bacillus subtilisrestricts foliar pathogen entry through stomata. Plant J 72:694–706.  https://doi.org/10.1111/j.1365-313X.2012.05116.x CrossRefPubMedGoogle Scholar
  43. Lal R (2003) Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci 22:151–184CrossRefGoogle Scholar
  44. Lambers H, Clements JC, Nelson MN (2013) How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am J Bot 100:263–288.  https://doi.org/10.3732/ajb.1200474 CrossRefPubMedGoogle Scholar
  45. Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587CrossRefGoogle Scholar
  46. Lavelle P, Spain AV (2005) Soil ecology. Springer, Dordrecht, pp 1–654Google Scholar
  47. Li B, Li Y-Y, Wu H-M, Zhang F-F, Li C-J, Li X-X, Lambers H, Li L (2016) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. PNAS 113:6496–6501CrossRefGoogle Scholar
  48. Ma Y, Zhang M, Li Y, Shui J, Zhou Y (2014) Allelopathy of rice (Oryza sativa L.) root exudates and its relations with Orobanche Cumana Wallr. and Orobanche minor Sm. germination. J Plant Interact 9:722–730.  https://doi.org/10.1080/17429145.2014.912358.CrossRefGoogle Scholar
  49. Matilla MA, Ramos JL, Bakker PAHM, Doornbos R, Badri DV, Vivanco JM, Ramos-González MI (2010) Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Environ Microbiol Rep 2:381–388.  https://doi.org/10.1111/j.17582229.2009.00091.x CrossRefPubMedGoogle Scholar
  50. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science 332:1097–1100.  https://doi.org/10.1126/science.1203980 CrossRefPubMedGoogle Scholar
  51. Mezzari MP, Zimermann DMH, Corseuil HX, Nogueira AV (2011) Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils. Rev Bras Ciênc Solo 35:2227–2236CrossRefGoogle Scholar
  52. Michalet S, Rohr J, Warshan D, Bardon C, Roggy J-C, Domenach A-M, Czarnes S, Pommier T, Combourieu B, Guillaumaud N, Bellvert F, Comte G, Poly F (2013) Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy. Plant Physiol Biochem 72:169–177.  https://doi.org/10.1016/j.plaphy.2013.05.003 CrossRefGoogle Scholar
  53. Morrissey JP, Dow JM, Mark GL, O’Gara F (2004) Are microbes at the root of a solution to world food production? EMBO Rep 5:922–926.  https://doi.org/10.1038/sj.embor.7400263 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Narula N, Kothe E, Behl RK (2009) Role of root exudates in plant-microbe interactions. J Appl Bot Food Qual 82:122–130Google Scholar
  55. Naznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M, Hyakumachi M, Yang C-H (2014) Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One 9(1):e86882.  https://doi.org/10.1371/journal.pone.0086882 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attracts Pseudomonas putida to the rhizosphere. PLoS One 7:e35498.  https://doi.org/10.1371/journal.pone.0035498 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nguema-Ona E, Vicré-Gibouin M, Cannesan M-A, Driouich A (2013) Arabinogalactan proteins in root–microbe interactions. Trends Plant Sci 18(8):440–449.  https://doi.org/10.1016/j.tplants.2013.03.006 CrossRefPubMedGoogle Scholar
  58. Olson PE, Reardon KF, Pilon-Smits EAH (2003) Ecology of rhizosphere bioremediation. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, pp 317–357.  https://doi.org/10.1002/047127304X.ch10
  59. Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte J-L, De Deyn GB, Eggleton P, Fierer N, Fraser T, Hedlund K, Jeffery S, Johnson NC, Jones A, Kandeler E, Kaneko N, Lavelle P, Lemanceau P, Miko L, Montanarella L, Moreira FMS, Ramirez KS, Scheu S, Singh BK, Six J, van der Putten WH, Wall DH (2016) Global soil biodiversity Atlas. European Commission, Publications Office of the European Union, Luxembourg, 176 ppGoogle Scholar
  60. Pavlović P, Muscolo A, Sidari M, Mitrović M (2014) Non-trophic interactions: allelopathy. In: Dighton J, Krumins JA (eds) Interactions in soil: promoting plant growth, biodiversity, community and ecosystems 1. Springer, Berlin, pp 139–162.  https://doi.org/10.1007/978-94-017-8890-8_7 CrossRefGoogle Scholar
  61. Pereg L, McMillan M (2015) Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biol Biochem 80:349–358CrossRefGoogle Scholar
  62. Pérès G (2014) Soils suppressing biodiversity. In: Dighton J, Krumins JA (eds) Interactions in soil: promoting plant growth, biodiversity, community and ecosystems 1. Springer, Berlin, pp 95–118.  https://doi.org/10.1007/978-94-017-8890-8_5 CrossRefGoogle Scholar
  63. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375CrossRefGoogle Scholar
  64. Pineda A, Zheng SJ, Van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514CrossRefGoogle Scholar
  65. Pineda A, Soler R, Pozo MJ, Rasmann S, Turlings TCJ (2015) Editorial: Above-belowground interactions involving plants, microbes and insects. Front Plant Sci 6:318.  https://doi.org/10.3389/fpls.2015.00318 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 1–472Google Scholar
  67. Rasmann S, Bennett A, Biere A, Karley A, Guerrieri E (2017) Root symbionts: powerful drivers of plant above- and belowground indirect defences. Insect Sci 24:1–14.  https://doi.org/10.1111/1744-7917.12464 CrossRefGoogle Scholar
  68. Read DS, Matzke M, Gweon HS, Newbold LK, Heggelund L, Ortiz MD, Lahive E, Spurgeon D, Svendsen C (2016) Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. Environ Sci Pollut Res 23:4120–4128.  https://doi.org/10.1007/s11356-015-4538-z CrossRefGoogle Scholar
  69. Reich PB, Tilman D, Naeem S, Ellsworth DS, Knops J, Craine J, Wedin D, Trost J (2004) Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proc Natl Acad Sci USA 101:10101–10106.  https://doi.org/10.1073/pnas.0306602101 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148(3):1547–1556.  https://doi.org/10.1104/pp.108.127613 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rugova A, Puschenreiter M, Koellensperger G, Hanna S (2017) Elucidating rhizosphere processes by mass spectrometry – a review. Anal Chim Acta 956:1–13CrossRefGoogle Scholar
  72. Schmelz EA (2015) Impacts of insect oral secretions on defoliation-induced plant defense. Curr Opin Insect Sci 9:7–15CrossRefGoogle Scholar
  73. Sen R (2003) The root–microbe–soil interface: new tool for sustainable plant production. New Phytol 157:391–398CrossRefGoogle Scholar
  74. Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393.  https://doi.org/10.1016/j.tim.2004.06.008 CrossRefPubMedGoogle Scholar
  75. Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant–fungus interactions. Molecules 12:1290–1306.  https://doi.org/10.3390/12071290 CrossRefGoogle Scholar
  76. Termorshuizen AJ (2014) Root pathogens. In: Dighton J, Krumins JA (eds) Interactions in soil: promoting plant growth, biodiversity, community and ecosystems 1. Springer, Berlin, pp 119–138.  https://doi.org/10.1007/978-94-017-8890-8_6 CrossRefGoogle Scholar
  77. Trolove SN, Hedley MJ, Kirk GJD, Bolan NS, Loganathan B (2003) Progress in selected areas of rhizosphere on P acquisition. Aust J Soil Res 41:471–499CrossRefGoogle Scholar
  78. Tsunoda T, Kachi N, Suzuki J-I (2014a) Availability and temporal heterogeneity of water supply affect the vertical distribution and mortality of a belowground herbivore and consequently plant growth. PLoS One 9:e100437.  https://doi.org/10.1371/journal.pone.0100437 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tsunoda T, Kachi N, Suzuki J-I (2014b) Effects of belowground vertical distribution of a herbivore on plant biomass and survival in Lolium perenne. Ecol Res 29:351–355.  https://doi.org/10.1007/s11284-014-1133-6 CrossRefGoogle Scholar
  80. Tsunoda T, Kachi N, Suzuki J-I (2014c) Effects of belowground herbivory on the survival and biomass of Lolium perenne and Plantago lanceolata plants at various growth stages. Botany 92:737–741.  https://doi.org/10.1139/cjb-2014-0045 CrossRefGoogle Scholar
  81. Tsunoda T, Kachi N, Suzuki J-I (2017) Belowground herbivory decreases shoot water content and biomass of Lolium perenne seedlings under nutrient-poor conditions. Botany 95:29–36.  https://doi.org/10.1139/cjb-2016-0076 CrossRefGoogle Scholar
  82. Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588.  https://doi.org/10.1016/j.phytochem.2009.06.009 CrossRefPubMedGoogle Scholar
  83. Velmourougane K, Prasanna R, Saxena AK (2017) Agriculturally important microbial biofilms: present status and future prospects. J Basic Microbiol 57:548–573.  https://doi.org/10.1002/jobm.201700046 CrossRefPubMedGoogle Scholar
  84. Vos CNF, Kazan K (2016) Belowground defence strategies in plants. Springer, BerlinCrossRefGoogle Scholar
  85. Wen F, Van Etten HD, Tsaprailis G, Hawes MC (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143:773–783.  https://doi.org/10.1104/pp.106.091637 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009a) Exploiting plant–microbe partnerships for improving biomass production and remediation. Trends Biotechnol 27:591–598CrossRefGoogle Scholar
  87. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009b) Phytoremediation: Plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254CrossRefGoogle Scholar
  88. Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW (2015) The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16:25576–25604.  https://doi.org/10.3390/ijms161025576 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Xie F, Williams A, Edwards A, Downie JA (2012) A plant arabinogalactan like glycoprotein promotes a novel type of polar surface attachment by Rhizobium leguminosarum. Mol Plant Microbe Interact 25:250–258.  https://doi.org/10.1094/MPMI-08-11-0211 CrossRefPubMedGoogle Scholar
  90. Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9.  https://doi.org/10.1016/j.apsoil.2013.03.007 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Amita Sharma
    • 1
  • Rajnish Kumar Verma
    • 2
  1. 1.Department of AgricultureShaheed Udham Singh College of Research and TechnologyTangoriIndia
  2. 2.Department of BotanyDolphin PG College of Science and AgricultureChunni KalanIndia

Personalised recommendations