Advertisement

Root Biology pp 281-301 | Cite as

Bioprotection of Soybean Plants from Drought Stress by Application of Bacterial and Fungal Endophytes

  • Dipanti Chourasiya
  • Richa Agnihotri
  • Anil Prakash
  • Kamal K. Pal
  • Mahaveer P. Sharma
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 52)

Abstract

Soybean [Glycine max (L.) Merrill] is counted as the most important legume oilseed crop worldwide known for its high protein (35–40%) and oil (18–20%) content. Global climatic changes with persistent droughts are a major challenge and limiting factor for sustaining the yields of soybean. Several adaptations and mitigation strategies are required to cope with drought stress. Conventional breeding approaches employed for evolving drought-tolerant lines although is a viable solution requires more time and is long-term approach. As an alternate strategy, the use of microbial endophytes (bacterial and fungal) could play a significant role in the alleviation of drought stress and confer tolerance to plants. These beneficial microorganisms colonize the rhizosphere/phyllosphere of plants and impart drought tolerance by producing exopolysaccharides (EPS), phytohormones, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and volatile compounds and inducing accumulation of osmolytes and antioxidants, upregulation or downregulation of stress-responsive genes, and alteration in root morphology thereby making plants tolerant to cope during drought stress. The term induced systemic tolerance (IST) was also discussed on how physical and chemical changes induced by endophyte in plants which result in enhanced tolerance to drought stresses. In the present chapter, we also elaborated the role of bacterial and fungal endophytes and underlying mechanisms involved in helping soybean plants to cope with drought stress.

Keywords

Glycine max Rhizosphere Root morphology Symbiotic associations Moisture stress 

Notes

Acknowledgements

Authors are grateful to Director, ICAR–Indian Institute of Soybean Research, Indore, for providing necessary infrastructure, facilities, and funding from ICAR–extramural network subproject to MPS and fellowship to DC; senior author is gratefully acknowledged.

References

  1. Agre P (2006) The aquaporin water channels. Proc Am Thorac Soc 3(1):5–13PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) Lag ex Steud. New Phytol 91:191–196CrossRefGoogle Scholar
  3. Allen MF, Boosalis MG (1983) Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol 93:67–76CrossRefGoogle Scholar
  4. Allen MF, Smith WK, Moore TS Jr, Christensen M (1981) Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis. New Phytol 88:683–693CrossRefGoogle Scholar
  5. Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032Google Scholar
  6. Annapurna K, Ramadoss D, Bose P, Vithal Kumar L (2013) In situ localization of Paenibacillus polymyxa HKA-15 in roots and root nodules of soybean (Glycine max L.) Plant Soil 373:641–648.  https://doi.org/10.1007/s11104-013-1825-7 CrossRefGoogle Scholar
  7. Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:5649–15654CrossRefGoogle Scholar
  8. Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816CrossRefPubMedGoogle Scholar
  9. Aroca R, Ruiz-Lozano JM, Zamarreno AM, Paz JA, Garcia-Mina JM, Pozo MJ, Lopez-Raez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55PubMedCrossRefGoogle Scholar
  10. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) Pedosphere 18:611–620CrossRefGoogle Scholar
  11. Asaf S, Khan MA, Khan AL, Waqas M, Shahzad R, Kim AY, Kang SM, Lee IJ (2017) Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: an example of Sphingomonas sp. and Serratia marcescens. J Plant Interact 12:31–38CrossRefGoogle Scholar
  12. Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New York, p 199Google Scholar
  13. Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant growth promoting Bacillus strains from soybean root nodules. Can J Microbiol 48(3):230–238PubMedCrossRefGoogle Scholar
  14. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413CrossRefGoogle Scholar
  15. Bashan Y, Holguin G, de Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances. Can J Microbiol 50:521–577PubMedCrossRefGoogle Scholar
  16. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33CrossRefGoogle Scholar
  17. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423PubMedCrossRefGoogle Scholar
  18. Berard A, Ben Sassi M, Kaisermann A, Renault P (2015) Soil microbial community responses to heat wave components: drought and high temperature. Climate Res 66:243–264CrossRefGoogle Scholar
  19. Bertalan M, Albano R, de Padua V, Rouws L, Rojas C, Hemerly A et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bilal S, Khan AL, Shahzad R, Asaf S, Kang SM, Lee IJ (2017) Endophytic Paecilomyces formosus LHL10 augments Glycine max L. Adaptation to Ni-contamination through affecting endogenous phytohormones and oxidative stress. Front Plant Sci 8:870.  https://doi.org/10.3389/fpls.2017.00870 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Brandl MT (2006) Fitness of human enteric pathogens on plants and implications for food safety. Annu Rev Phytopathol 44:367–392.  https://doi.org/10.1146/annurev.phyto.44.070505.143359 CrossRefPubMedGoogle Scholar
  22. Chaves M, Maroco J, Pereira J (2003) Understanding plant responses to drought from genes to whole plant. Funct Plant Biol 30:239–264CrossRefGoogle Scholar
  23. Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proAB genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403PubMedGoogle Scholar
  24. Chen Y, Mao W, Tao H, Zhu W, Qi X, Chen Y, Li H, Zhao C, Yang Y, Hou Y, Wang C, Li N (2011) Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresour Technol 102(17):8179–8184PubMedCrossRefGoogle Scholar
  25. Close TJ (1996) Dehydrins emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803CrossRefGoogle Scholar
  26. Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462.  https://doi.org/10.1139/B09-023 CrossRefGoogle Scholar
  27. Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153:79–90PubMedCrossRefGoogle Scholar
  28. Contesto C, Milesi S, Mantelin S, Zancarini A, Desbrosses G, Varoquaux F, Bellini C, Kowalczyk M, Touraine B (2010) The auxin-signaling pathway is required for the lateral root response of arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232:1455–1470PubMedCrossRefGoogle Scholar
  29. Cooper G (2009) The cell: a molecular approach. ASM Press, Washington, DC, p 544. ISBN: 978-0-87893-300-6Google Scholar
  30. Costa JM, Loper JE (1994) Characterization of siderophore production by the biological-control agent Enterobacter cloacae. Mol Plant Microbe Interact 7:440–448CrossRefGoogle Scholar
  31. Dalal JM, Kulkarni NS (2012) Isolation and identification of endophytic microorganisms of soybean (Glycine max (L.) Merril). Biomed Pharmacol J 5:2Google Scholar
  32. Dalal JM, Kulkarni NS (2014) Population variance and diversity of endophytic fungi in soybean (Glycine max (L) Merril). Res Rev J Bot Sci 3(4):33–39Google Scholar
  33. Daszkowska-Golec A (2016) The role of abscisic acid in drought stress: how aba helps plants to cope with drought stress. In: Hossain MA, Wani SH, Bhattachajee S, Burritt DJ, Tran LS (eds) Drought stress tolerance in plants, vol 2. Springer International Publishing, Cham, pp 123–151.  https://doi.org/10.1007/978-3-319-32423-4_5 CrossRefGoogle Scholar
  34. De Souza Leite T, Cnossen-Fassoni A, Pereira OL, Mizubuti ES, de Araújo EF, de Queiroz MV (2013) Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques. J Microbiol 51(1):56–69PubMedCrossRefGoogle Scholar
  35. Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379CrossRefGoogle Scholar
  36. Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438PubMedPubMedCentralGoogle Scholar
  37. Egamberdieva D, Wirth S, Behrendt U, Abd-Allah EF, Berg G (2016) Biochar treatment resulted in a combined effect on soybean growth promotion and a shift in plant growth promoting rhizobacteria. Front Microbiol 7:209PubMedPubMedCentralCrossRefGoogle Scholar
  38. Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46:617–629CrossRefGoogle Scholar
  39. Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl –stressed Trigonella foenum – graecum. Mycorrhiza 22:203–217CrossRefPubMedGoogle Scholar
  40. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212CrossRefGoogle Scholar
  41. Fatima Z, Zia M, Chauhary MF (2006) Effect of Rhizobium and phosphorus on growth of soybean (Glycine max) and survival of Rhizobium and P solubilizing bacteria. Pak J Bul 38(2):459–464Google Scholar
  42. Fernandes EG, Pereira OL, da Silva CC, Bento CB, de Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92.  https://doi.org/10.1016/j.micres.2015.05.010 CrossRefPubMedGoogle Scholar
  43. Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188CrossRefGoogle Scholar
  44. Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LF, Krogfelt KA, Struve C, Triplett EW, Methe BA (2008) Complete genome sequence of the N2 fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4:e1000141PubMedPubMedCentralCrossRefGoogle Scholar
  45. Frederick JR, Camp CR, Bauer PJ (2001) Drought-stress effects on branch and main stem seed yield and yield components of determinate soybean. Crop Sci 41:759–763CrossRefGoogle Scholar
  46. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750PubMedCrossRefGoogle Scholar
  47. Gasser I, Cardinale M, Muller H, Heller S, Eberl L, Lindenkamp N, Kaddor C, Steinbuchel A, Berg G (2011) Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant Soil 347:125–136CrossRefGoogle Scholar
  48. Germida JJ, Siciliano SD, Freitas JR, Seib AM (1998) Diversity of root associated bacteria associated with field grown canola (Brassica napus L.) and wheat (Triticum aestivum L.) FEMS Microbiol Ecol 26:43–50CrossRefGoogle Scholar
  49. Gill SS, Gill R, Trivedi KD, Anjum AN, Sharma KK, Ansari MW, Ansari AA, Johri KA, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica potential and significance in plant stress tolerance. Front Microbiol 7:332PubMedPubMedCentralCrossRefGoogle Scholar
  50. Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  51. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7PubMedCrossRefGoogle Scholar
  52. Glick BR, Penrose DM, Li J (1998) A model for lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theoret Biol 190:62–68CrossRefGoogle Scholar
  53. Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321CrossRefGoogle Scholar
  54. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240CrossRefGoogle Scholar
  55. Grumberg BC, Urcelay C, Shroeder MA, Vargas-Gil S, Luna CM (2015) The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biol Fertil Soils 51:1–10CrossRefGoogle Scholar
  56. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  57. Hamayun M, Khan SA, Ahmad N, Tang DS, Kang SM, Na CI, Sohn EY, Hwang YH Shin DH, Lee BH, Kim JG, Lee IJ (2009) Cladosporium sphaerospermum as a new plant growth promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25:627–632CrossRefGoogle Scholar
  58. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471PubMedCrossRefGoogle Scholar
  59. Hendry GA (2005) Oxygen free radical process and seed longevity. Seed Sci J 3:141–147Google Scholar
  60. Hung PQ, Annapurna K (2004) Isolation and characterization of endophytic bacteria in soybean (Glycine sp.) Omonrice 12:92–101Google Scholar
  61. Impullitti AE, Malvick DK (2013) Fungal endophyte diversity in soybean. J Appl Microbiol 114:1500–1506PubMedCrossRefGoogle Scholar
  62. Jain M, Mathur G, Koul S, Sarin NB (2001) Ameliorative effects of proline on salt stress induced lipid peroxidation in cell lines of groundnuts (Arachis hypogaea L.) Plant Cell Rep 20:463–468CrossRefGoogle Scholar
  63. Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98.  https://doi.org/10.1016/j.micres.2013.06.003 CrossRefPubMedGoogle Scholar
  64. Joshi OP, Bhatia VS (2003) Stress management in soybean. In: Singh H, Hegde DM (eds) Souvenir. National seminar on stress management in oilseeds for attaining self-reliance in vegetable oils. Indian Society of Oilseeds Research, Hyderabad, pp 13–25Google Scholar
  65. Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124PubMedCrossRefGoogle Scholar
  67. Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–45CrossRefGoogle Scholar
  68. Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ (2013) Endophytic fungi: a source of gibberellins and crop resistance to abiotic stress. Crit Rev Biotechnol 35:62–74PubMedCrossRefGoogle Scholar
  69. Kohler J, Caravaca F, Alguacil MM, Roldán A (2009) Elevated CO2 increases the effect of an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium on structural stability of a semiarid agricultural soil under drought conditions. Soil Biol Biochem 41:1710–1716CrossRefGoogle Scholar
  70. Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Bohm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorholter FJ, Weidner S, Puhler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic, N2 fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1385–1391PubMedCrossRefGoogle Scholar
  71. Kuklinsky Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251PubMedCrossRefGoogle Scholar
  72. Kwak MJ, Song JY, Kim SY, Jeong H, Kang SG, Kim BK, Kwon SK, Lee CH, Yu DS, Park SH, Kim JF (2012) Complete genome sequence of the endophytic bacterium Burkholderia sp. strain KJ006. J Bacteriol 194:4432–4433PubMedPubMedCentralCrossRefGoogle Scholar
  73. Levy I, Krikun J (1980) Effect of vesicular-arbuscular mycorrhiza in Citrus jambhiri water relations. New Phytol 85:25–32CrossRefGoogle Scholar
  74. Li J, Wang E, Chen W, Chen W (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246CrossRefGoogle Scholar
  75. Li T, Hu YJ, Hao ZP, Li H, Chen BD (2013) Aquaporin genes GintAQPF1 and GintAQPF2 from glomus intraradices contribute to plant drought tolerance. Plant Signal Behav 8:e24030.  https://doi.org/10.4161/psb.24030 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620PubMedCrossRefGoogle Scholar
  77. Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483PubMedCrossRefGoogle Scholar
  78. Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane- 1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278PubMedCrossRefGoogle Scholar
  79. Mahapatra S, Banerjee D (2013) Evaluation of in vitro antioxidant potency of exopolysaccharide from endophytic Fusarium solani SD5. Int J Biol Macromol 53:62–66PubMedCrossRefGoogle Scholar
  80. Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant beneficial endophytic strain from giant hogweed. J Microb Biotechnol 4:523–532CrossRefGoogle Scholar
  81. Marquez LM, Redman RS, Rodriguez RJ, Roossinl MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515PubMedCrossRefGoogle Scholar
  82. Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G (2010) Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res 9:2372–2380PubMedCrossRefGoogle Scholar
  83. Mathimaran N, Sharma MP, Mohan Raju B, Bagyaraj DJ (2017) Mycosphere Essay 17 Arbuscular mycorrhizal symbiosis and drought tolerance in crop plants. Mycosphere 8(3):361–376CrossRefGoogle Scholar
  84. Meneses CHSG, Rouws LFM, Simoes-Araújo V, idal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant Microbe Interact 24:1448–1458PubMedCrossRefGoogle Scholar
  85. Miller WA, Roy KW (1982) Mycoflora of soybean leaves, pods, and seeds. Can J Bot 60:2716–2723CrossRefGoogle Scholar
  86. Miller G, Susuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467CrossRefGoogle Scholar
  87. Nair A, Abraham TK, Jaya DS (2008) Studies on the changes in lipid peroxidation and antioxidants in drought stress induced Cowpea (Vigna unguiculata L.) varieties. J Environ Biol 29:689–691PubMedGoogle Scholar
  88. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726PubMedCrossRefGoogle Scholar
  89. Nhu VTP, Diep CN (2017) Isolation and characterization of endophytic bacteria in soybean (Glycine max L. (Merrill)) cultivated on alluvial soil of Can Tho city, Vietnam. Int J Innov Eng Technol 8:202–221.  https://doi.org/10.21172/ijiet.83.028 CrossRefGoogle Scholar
  90. Onofre-Lemus J, Hernandez-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pimentel IC, Glienke-Blanco C, Gabardo J, Stuart MR, Azevedo JL (2006) Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Braz Arch Biol Technol 49:705–711CrossRefGoogle Scholar
  92. Porcel R, Zamarreno AM, Garcia Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:36PubMedPubMedCentralCrossRefGoogle Scholar
  93. Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–328CrossRefGoogle Scholar
  94. Rao NSS (1982) Phosphate solubilization by soil microorganisms. In: Rao NSS (ed) Advances in agricultural microbiology. Oxford and IBH Publishing, New Delhi, pp 295–305Google Scholar
  95. Rapparini F, Penuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 21–42CrossRefGoogle Scholar
  96. Reid CPP (1979) Mycorrhizae and water stress. In: Reidacher A, Gagnaire-Michard G (eds) Root physiology and symbiosis. IUFRO Proc, Nancy, pp 392–408Google Scholar
  97. Romero FM, Marina M, Pieckenstain FL (2014) The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 351:187–194PubMedCrossRefGoogle Scholar
  98. Russo ML, Pelizza SA, Cabello MN, Stenglein SA, Vianna MF, Scorsetti AC (2016) Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina. Rev Argent Microbiol 48:154–160PubMedGoogle Scholar
  99. Ruth B, Khalvati M, Schmidhalter U (2011) Quantification of mycorrhizal water uptake via high resolution on line water content sensors. Plant and Soil 342:459–468CrossRefGoogle Scholar
  100. Safir GR, Boyer JS, Gerdemann JW (1971) Mycorrhizal enhancement of water transports in soybean. Science 172:581–583PubMedCrossRefGoogle Scholar
  101. Sahay N, Varma A (1999) Piriformospora indica, a new biological hardening tool for micropropagated plants. FEMS Lett 181:297–302CrossRefGoogle Scholar
  102. Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26CrossRefGoogle Scholar
  103. Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004CrossRefGoogle Scholar
  104. Sediyama T, Teixeira RC, Barros HB (2009) Origem, evoluçao e importancia economica. In: Sediyama T (ed) Tecnologias de produçao e usos da soja. Mecenas, Londrina, pp 1–5Google Scholar
  105. Senthilkumar M, Swarnalakshmi K, Govindasamy V, Lee YK, Annapurna K (2009) Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola. Curr Microbiol 58:288–293PubMedCrossRefGoogle Scholar
  106. Shahollari B, Varma A, Oelmuller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945–958PubMedCrossRefGoogle Scholar
  107. Sharma S, Kulkarni J, Jha B (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 7:1600.  https://doi.org/10.3389/fmicb.2016.01600 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Shi Y, Yang H, Zhang T, Sun J, Lou K (2014) Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 98:6375–6385PubMedCrossRefGoogle Scholar
  109. Sieverding E (1981) Influence of soil water regimes in VA mycorrhiza: I. Effect on plant growth, water utilization and development of mycorrhiza. Z Acker Pflanzenbau 150:400–411Google Scholar
  110. Simpson D, Daft MJ (1990) Increasing between water stress and different mycorrhizal colonization inocula on plant growth and mycorrhizal development in maize and sorghum. Plant Soil 121:179–186CrossRefGoogle Scholar
  111. Sionet N, Kramer PJ (1977) Effect of water stress during different stages of growth of soybean. Agron J 69:274–278CrossRefGoogle Scholar
  112. Smirnoff N, Cumbs QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060CrossRefGoogle Scholar
  113. Snellgrove RC, Splittstoesser WE, Stribley DP, Tinker PB (1982) The distribution of carbon and the demand of the fungal symbionts in leek plants with vesicular arbuscular mycorrhizas. New Phytol 92:75–87CrossRefGoogle Scholar
  114. Stoltzfus JR, So R, Malarvithi PP, Ladha JK, de Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36CrossRefGoogle Scholar
  115. Suman A, Verma P, Yadav AN (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New York, pp 117–143CrossRefGoogle Scholar
  116. Sun Y, Cheng Z, Glick BR (2009) The presence of a1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136PubMedCrossRefGoogle Scholar
  117. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, vander Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757PubMedCrossRefGoogle Scholar
  118. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinecure Associates, SunderlandGoogle Scholar
  119. Tenguria RK, Firodiya A (2013) Diversity of endophytic fungi in leaves of Glycine max (L.) merr. from central region of Madhya Pradesh. World J Pharm Pharm Sci 2(6):5928–5934Google Scholar
  120. Torres MJ, Perez Brandan C, Petroselli G, Erra-Balsells R, Audisio MC (2016) Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiol Res 182:31–39PubMedCrossRefGoogle Scholar
  121. Varma A, Bakshi M, Binggan L, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131CrossRefGoogle Scholar
  122. Vassileva M, Vassilev N, Azcon R (1998) Rock phosphate solubilization by Aspergillus niger on olive cake-based medium and its further application in a soil plant system. World J Microbiol Biotechnol 14:281–284CrossRefGoogle Scholar
  123. Wahid A, Close T (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109CrossRefGoogle Scholar
  124. Wahid A, Rasul E (2005) Photosynthesis in leaf, stem, flower and fruit. In: Pessarakli M (ed) Hand book of photosynthesis, vol 2E. CRC Press, Florida, pp 479–497Google Scholar
  125. Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol Fertil Soils 40:36–43CrossRefGoogle Scholar
  126. Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. J Pineal Res 53:11–20PubMedCrossRefGoogle Scholar
  127. Weilharter A, Mitter B, Shin MV, Chain PS, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wisniewski-Dye F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Hurst GB, McDonald WH, Robertson JS, Barbe V, Calteau A, Rouy Z, Mangenot S, Prigent-Combaret C, Normand P, Boyer M, Siguier P, Dessaux Y, Elmerich C, Condemine G, Krishnen G, Kennedy I, Paterson AH, Gonzalez V, Mavingui P, Zhulin IB (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7(12):e1002430PubMedPubMedCentralCrossRefGoogle Scholar
  129. Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci 105:7564–7569PubMedPubMedCentralCrossRefGoogle Scholar
  130. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte system. Science 217(4566):1214–1222PubMedCrossRefGoogle Scholar
  131. Yang JW, Yu SH, Ryu CM (2009) Priming of defense-related genes confers root colonizing bacilli-elicited induced systemic resistance in pepper. Plant Pathol J 25:303–440CrossRefGoogle Scholar
  132. Zachow C, Fatehi J, Cardinale M, Tilcher R, Berg G (2010) Strain-specific colonization pattern of Rhizoctonia antagonists in the root system of sugar beet. FEMS Microbiol Ecol 74:24–35CrossRefGoogle Scholar
  133. Zhao FL, Lai X (2017) Antagonistic endophytic bacteria associted with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz J Microbiol.  https://doi.org/10.1016/j.bjm.2017.06.007
  134. Zhang YZ, Chen WF, Li M, Sui XH, Liu H-C, Zhang XX, Chen WX (2012) Bacillus endoradicis sp. nov., an endophytic bacterium isolated from soybean root. Int J Syst Evol Microbiol 62:359–336PubMedCrossRefGoogle Scholar
  135. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273PubMedPubMedCentralCrossRefGoogle Scholar
  136. Zhu X, Song F, Liu S (2011) Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. J Food Agric Environ 9:583–587Google Scholar
  137. Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dipanti Chourasiya
    • 1
  • Richa Agnihotri
    • 1
  • Anil Prakash
    • 2
  • Kamal K. Pal
    • 3
  • Mahaveer P. Sharma
    • 1
  1. 1.ICAR-Indian Institute of Soybean ResearchIndoreIndia
  2. 2.Faculty of Life Sciences, Department of MicrobiologyBarkatullah UniversityBhopalIndia
  3. 3.Directorate of Groundnut Research (DGR-ICAR)JunagadhIndia

Personalised recommendations