Pre-clinical Profile and Expectations for Pharmacological ATM Inhibition

  • Anika M. Weber
  • Anderson J. RyanEmail author
Part of the Cancer Drug Discovery and Development book series (CDD&D)


The central DNA damage response (DDR) kinase Ataxia-telangiectasia mutated (ATM) has become an attractive target for cancer therapy. Pre-clinical studies have encouraged the further clinical development of ATM inhibitors, both in combination with chemo- or radiotherapy and as a single agent for the treatment of tumours harbouring deficiencies in certain DDR pathways. The challenges for the successful future development of ATM inhibitors for the clinic will be to translate the knowledge of the cellular phenotypes caused by inhibition of ATM function into the identification of the most beneficial combination strategies and treatment schedules, and to identify robust biomarkers for patient selection and assessment of target inhibition. In this chapter we will review the current knowledge of the cellular defects caused by ATM kinase inhibition and the differences from the known defects observed in ATM-deficient cells. We will also discuss some of the pre-clinical data from in vitro studies with pharmacological ATM inhibitors, the (thus far) most promising combinations of ATM inhibitors with genotoxic modalities, potential synthetic lethal approaches and potential biomarkers for patient selection and assessment of target inhibition.


DDR Ataxia-telangiectasia mutated ATM ATM inhibitor KU-55933 KU-60019 Radiosensitisation Chemosensitisation Synthetic lethality 


  1. Abdel-Fatah T, Sultana R, Abbotts R, Hawkes C, Seedhouse C, Chan S, Madhusudan S (2013) Clinicopathological and functional significance of XRCC1 expression in ovarian cancer. Int J Cancer 132:2778–2786PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aguilar-Quesada R, Muñoz-Gámez JA, Martín-Oliva D, Peralta A, Valenzuela MT, Matínez-Romero R, Quiles-Pérez R, Menissier-de Murcia J, de Murcia G, Ruiz de Almodóvar M, Oliver FJ (2007) Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. BMC Mol Biol 8:29PubMedPubMedCentralCrossRefGoogle Scholar
  4. Álvarez-Quilón A, Serrano-Benítez A, Lieberman JA, Quintero C, Sánchez-Gutiérrez D, Escudero LM, Cortés-Ledesma F (2014) ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nat Commun 5:3347PubMedPubMedCentralCrossRefGoogle Scholar
  5. Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, Lu K, Schmutzler RK, Matulonis U, Wickens M, Tutt A (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376:245–251PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bakr A, Oing C, Kocher S, Borgmann K, Dornreiter I, Petersen C, Dikomey E, Mansour WY (2015) Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation. Nucleic Acids Res 43:3154–3166PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, Wynshaw-Boris A (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86:159–171PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bartek J, Lukas C, Lukas J (2004) Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5:792–804PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bartkova J, Horejsi Z, Koed K, Krämer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Ørntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou L-VF, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Ørntoft T, Lukas J et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637PubMedCrossRefPubMedCentralGoogle Scholar
  12. Batey MA, Zhao Y, Kyle S, Richardson C, Slade A, Martin NMB, Lau A, Newell DR, Curtin NJ (2013) Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer. Mol Cancer Ther 12:959–967PubMedPubMedCentralCrossRefGoogle Scholar
  13. Beà S, Valdés-Mas R, Navarro A, Salaverria I, Martín-Garcia D, Jares P, Giné E, Pinyol M, Royo C, Nadeu F, Conde L, Juan M, Clot G, Vizán P, Di Croce L, Puente DA, López-Guerra M, Moros A, Roue G, Aymerich M et al (2013) Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A 110:18250–18255PubMedPubMedCentralCrossRefGoogle Scholar
  14. Beamish H, Lavin MF (1994) Radiosensitivity in ataxia-telangiectasia: anomalies in radiation-induced cell cycle delay. Int J Radiat Biol 65:175–184PubMedCrossRefPubMedCentralGoogle Scholar
  15. Berkovich E, Monnat RJ, Kastan MB (2007) Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9:683–690PubMedCrossRefPubMedCentralGoogle Scholar
  16. Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S, Goodarzi AA, Krempler A, Jeggo PA, Löbrich M (2009) ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 28:3413–3427PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK (2000) The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 275:23899–23903PubMedCrossRefPubMedCentralGoogle Scholar
  18. Biddlestone-Thorpe L, Sajjad M, Rosenberg E, Beckta JM, Valerie NCK, Tokarz M, Adams BR, Wagner AF, Khalil A, Gilfor D, Golding SE, Deb S, Temesi DG, Lau A, O’Connor MJ, Choe KS, Parada LF, Lim SK, Mukhopadhyay ND, Valerie K (2013) ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin Cancer Res 19:3189–3200PubMedPubMedCentralCrossRefGoogle Scholar
  19. Blasina A, Price BD, Turenne GA, McGowan CH (1999) Caffeine inhibits the checkpoint kinase ATM. Curr Biol 9:1135–1138PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bracey TS, Williams AC, Paraskeva C (1997) Inhibition of radiation-induced G2 delay potentiates cell death by apoptosis and/or the induction of giant cells in colorectal tumor cells with disrupted p53 function. Clin Cancer Res 3:1371–1381PubMedPubMedCentralGoogle Scholar
  21. Brown KD, Ziv Y, Sadanandan SN, Chessa L, Collins FS, Shiloh Y, Tagle DA (1997) The ataxia-telangiectasia gene product, a constitutively expressed nuclear protein that is not up-regulated following genome damage. Proc Natl Acad Sci U S A 94:1840–1845PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cancer Genome Atlas Research Network (2012a) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337CrossRefGoogle Scholar
  24. Cancer Genome Atlas Research Network (2012b) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525CrossRefGoogle Scholar
  25. Cancer Genome Atlas Research Network (2012c) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70CrossRefGoogle Scholar
  26. Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550CrossRefGoogle Scholar
  27. Chen L, Nievera CJ, Lee AY-L, Wu X (2008) Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem 283:7713–7720PubMedCrossRefPubMedCentralGoogle Scholar
  28. Choi S, Gamper AM, White JS, Bakkenist CJ (2010) Inhibition of ATM kinase activity does not phenocopy ATM protein disruption: implications for the clinical utility of ATM kinase inhibitors. Cell Cycle 9:4052–4057PubMedPubMedCentralCrossRefGoogle Scholar
  29. Choudhury A, Nelson LD, Teo MTW, Chilka S, Bhattarai S, Johnston CF, Elliott F, Lowery J, Taylor CF, Churchman M, Bentley J, Knowles MA, Harnden P, Bristow RG, Bishop DT, Kiltie AE (2010) MRE11 expression is predictive of cause-specific survival following radical radiotherapy for muscle-invasive bladder cancer. Cancer Res 70:7017–7026PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cimprich K, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cornell L, Munck JM, Alsinet C, Villanueva A, Ogle L, Willoughby CE, Televantou D, Thomas HD, Jackson J, Burt AD, Newell D, Rose J, Manas DM, Shapiro GI, Curtin NJ, Reeves HL (2015) DNA-PK-A candidate driver of hepatocarcinogenesis and tissue biomarker that predicts response to treatment and survival. Clin Cancer Res 21:925–933PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cornforth MN, Bedford JS (1985) On the nature of a defect in cells from individuals with ataxia-telangiectasia. Science 227:1589–1591PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286:1162–1166PubMedCrossRefPubMedCentralGoogle Scholar
  34. Daniel JA, Pellegrini M, Lee JH, Paull TT, Feigenbaum L, Nussenzweig A (2008) Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo. J Cell Biol 183:777–783PubMedPubMedCentralCrossRefGoogle Scholar
  35. Daniel JA, Pellegrini M, Lee BS, Guo Z, Filsuf D, Belkina NV, You Z, Paull TT, Sleckman BP, Feigenbaum L, Nussenzweig A (2012) Loss of ATM kinase activity leads to embryonic lethality in mice. J Cell Biol 198:295–304PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dar ME, Winters TA, Jorgensen TJ (1997) Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxia-telangiectasia cells. Mutat Res 384:169–179PubMedCrossRefGoogle Scholar
  37. Darroudi F, Wiegant W, Meijers M, Friedl AA, van der Burg M, Fomina J, van Dongen JJM, van Gent DC, Zdzienicka MZ (2007) Role of Artemis in DSB repair and guarding chromosomal stability following exposure to ionizing radiation at different stages of cell cycle. Mutat Res 615:111–124PubMedCrossRefGoogle Scholar
  38. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre’ M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d’Adda di Fagagna F (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642PubMedPubMedCentralCrossRefGoogle Scholar
  39. Elson A, Wang Y, Daugherty CJ, Morton CC, Zhou F, Campos-Torres J, Leder P (1996) Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci U S A 93:13084–13089PubMedPubMedCentralCrossRefGoogle Scholar
  40. Falck J, Mailand N, Syljuåsen RG, Bartek J, Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410:842–847PubMedCrossRefPubMedCentralGoogle Scholar
  41. Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NMB, Jackson SP, Smith GCM, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fedier A, Schlamminger M, Schwarz VA, Haller U, Howell SB, Fink D (2003) Loss of atm sensitises p53-deficient cells to topoisomerase poisons and antimetabolites. Ann Oncol 14:938–945PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Marja M-R, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JHM, de Bono JS (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134PubMedCrossRefPubMedCentralGoogle Scholar
  44. Foray N, Priestley A, Alsbeih G, Badie C, Capulas EP, Arlett CF, Malaise EP (1997) Hypersensitivity of ataxia telangiectasia fibroblasts to ionizing radiation is associated with a repair deficiency of DNA double-strand breaks. Int J Radiat Biol 72:271–283PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gatei M, Zhou BB, Hobson K, Scott S, Young D, Khanna KK (2001) Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. J Biol Chem 276:17276–17280PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gilad S, Khosravi R, Shkedy D, Uziel T, Ziv Y, Savitsky K, Rotman G, Smith S, Chessa L, Jorgensen TJ, Harnik R, Frydman M, Sanal O, Portnoi S, Goldwicz Z, Jaspers NGJ, Gatti RA, Lenoir G, Lavin MF, Tatsumi K et al (1996) Predominance of null mutations in ataxia-telangiectasia. Hum Mol Genet 5:433–439PubMedCrossRefPubMedCentralGoogle Scholar
  47. Gnad F, Baucom A, Mukhyala K, Manning G, Zhang Z (2013) Assessment of computational methods for predicting the effects of missense mutations in human cancers. BMC Genomics 14:S7PubMedPubMedCentralGoogle Scholar
  48. Goh AM, Coffill CR, Lane DP (2011) The role of mutant p53 in human cancer. J Pathol 223:116–126PubMedCrossRefPubMedCentralGoogle Scholar
  49. Golding SE, Rosenberg E, Valerie N, Hussaini I, Frigerio M, Cockcroft XF, Chong WY, Hummersone M, Rigoreau L, Menear KA, O’Connor MJ, Povirk LF, van Meter T, Valerie K (2009) Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol Cancer Ther 8:2894–2902PubMedPubMedCentralCrossRefGoogle Scholar
  50. Golding S, Rosenberg E, Adams BR, Wignarajah S, Beckta JM, O’Connor MJ, Valerie K (2012) Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control. Cell Cycle 11:1167–1173PubMedPubMedCentralCrossRefGoogle Scholar
  51. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, Jeggo PA (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167–177PubMedCrossRefPubMedCentralGoogle Scholar
  52. Goodarzi AA, Jeggo P, Löbrich M (2010) The influence of heterochromatin on DNA double strand break repair: getting the strong, silent type to relax. DNA Repair (Amst) 9:1273–1282CrossRefGoogle Scholar
  53. Gorgoulis VG, Vassiliou LF, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913PubMedCrossRefPubMedCentralGoogle Scholar
  54. Guichard S, Brown E, Odedra R, Hughes A, Heathcote D, Barnes J, Lau A, Powell S, Jones CD, Nissink W, Foote KM, Jewsbury PJ, Pass M (2013) The pre-clinical in vitro and in vivo activity of AZD6738: a potent and selective inhibitor of ATR kinase [abstract]. In: Proceedings of the 104th annual meeting of the American Association for Cancer Research, Washington, DC, 6–10 Apr 2013. AACR, Philadelphia, PA. Cancer Res 73(8 Suppl):Abstract nr 3343. CrossRefGoogle Scholar
  55. Guo K, Shelat AA, Guy RK, Kastan MB (2014) Development of a cell-based, high-throughput screening assay for ATM kinase inhibitors. J Biomol Screen 19:538–546PubMedCrossRefPubMedCentralGoogle Scholar
  56. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hammond EM, Dorie MJ, Giaccia AJ (2003) ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem 278:12207–12213PubMedCrossRefPubMedCentralGoogle Scholar
  58. Helleday T (2010) Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis 31:955–960PubMedCrossRefPubMedCentralGoogle Scholar
  59. Helleday T, Lo J, van Gent DC, Engelward BP (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair 6:923–935PubMedCrossRefPubMedCentralGoogle Scholar
  60. Helt CE, Cliby WA, Keng PC, Bambara RA, O’Reilly MA (2005) Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem 280:1186–1192PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NMB, Orr AI, Reaper PM, Jackson SP, Curtin NJ, Smith GC (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64:9152–9159PubMedCrossRefPubMedCentralGoogle Scholar
  62. Houldsworth J, Lavin M (1980) Effect of ionizing radiation on DNA synthesis in ataxia teleangiectasia cells. Nucleic Acids Res 8:3709–3720PubMedPubMedCentralCrossRefGoogle Scholar
  63. Huertas P, Jackson SP (2009) Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem 284:9558–9565PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jacquemin V, Rieunier G, Jacob S, Bellanger D, D’Enghien CD, Laugé A, Stoppa-Lyonnet D, Stern M-H (2012) Underexpression and abnormal localization of ATM products in ataxia telangiectasia patients bearing ATM missense mutations. Eur J Hum Genet 20:305–312PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jaspers NGJ, De Wit J, Regulski MR, Bootsma D (1982) Abnormal regulation of DNA replication and increased lethality in ataxia telangiectasia cells exposed to carcinogenic agents. Cancer Res 42:335–341PubMedPubMedCentralGoogle Scholar
  66. Jeggo PA (1998) DNA breakage and repair. Adv Genet 38:185–218PubMedPubMedCentralGoogle Scholar
  67. Jeggo PA, Löbrich M (2006) Contribution of DNA repair and cell cycle checkpoint arrest to the maintenance of genomic stability. DNA Repair (Amst) 5:1192–1198CrossRefGoogle Scholar
  68. Jenkins C, Kan J, Hoatlin ME (2012) Targeting the fanconi anemia pathway to identify tailored anticancer therapeutics. Anemia 2012:481583PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jones CD, Blades K, Foote KM, Guichard SM, Jewsbury PJ, McGuire T, Nissink JW, Odedra R, Tam K, Thommes P, Turner P, Wilkinson G, Wood C, Yates JW (2013) Discovery of AZD6738, a potent and selective inhibitor with the potential to test the clinical efficacy of ATR kinase inhibition in cancer patients [abstract]. In Proceedings of the 104th annual meeting of the American Association for Cancer Research, Washington, DC, 6–10 Apr 2013. AACR, Philadelphia, PA. Cancer Res 73(8 Suppl):Abstract nr 2348. CrossRefGoogle Scholar
  70. Kaelin WGJ (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5:689–698PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kakarougkas A, Jeggo PA (2014) DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol 87:20130685PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MDM, Miller CA, Welch JS, Walter MJ, Wendl MC, Ley TJ, Wilson RK, Raphael BJ, Ding L (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJJ (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kennedy RD, D’Andrea AD (2006) DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol 24:3799–3808PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kennedy RD, Chen CC, Stuckert P, Archila EM, De la Vega MA, Moreau LA, Shimamura A, D’Andrea AD (2007) Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J Clin Invest 117:1140–1149CrossRefGoogle Scholar
  76. Kim W-J, Vo QN, Shrivastav M, Lataxes TA, Brown KD (2002) Aberrant methylation of the ATM promoter correlates with increased radiosensitivity in a human colorectal tumor cell line. Oncogene 21:3864–3871PubMedCrossRefPubMedCentralGoogle Scholar
  77. Köcher S, Rieckmann T, Rohaly G, Mansour WY, Dikomey E, Dornreiter I, Dahm-Daphi J (2012) Radiation-induced double-strand breaks require ATM but not Artemis for homologous recombination during S-phase. Nucleic Acids Res 40:8336–8347PubMedPubMedCentralCrossRefGoogle Scholar
  78. Köcher S, Spies-Naumann A, Kriegs M, Dahm-Daphi J, Dornreiter I (2013) ATM is required for the repair of Topotecan-induced replication-associated double-strand breaks. Radiother Oncol 108:409–414PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF (2006) Involvement of novel autophosphorylation sites in ATM activation. EMBO J 25:3504–3514PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kozlov SV, Graham ME, Jakob B, Tobias F, Kijas AW, Tanuji M, Chen P, Robinson PJ, Taucher-Scholz G, Suzuki K, So S, Chen D, Lavin MF (2011) Autophosphorylation and ATM activation: additional sites add to the complexity. J Biol Chem 286:9107–9119PubMedCrossRefPubMedCentralGoogle Scholar
  81. Krejci L, Altmannova V, Spirek M, Zhao X (2012) Homologous recombination and its regulation. Nucleic Acids Res 40:5795–5818PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kubota E, Williamson CT, Ye R, Elegbede A, Peterson L, Lees-Miller SP, Bebb DG (2014) Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines. Cell Cycle 13:2129–2137PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kühne M, Riballo E, Rief N, Ku M, Rothkamm K, Jeggo PA, Löbrich M (2004) A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res 64:500–508PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kurosawa A, Adachi N (2010) Functions and regulation of Artemis: a goddess in the maintenance of genome integrity. J Radiat Res 51:503–509PubMedCrossRefPubMedCentralGoogle Scholar
  85. Landais I, Hiddingh S, McCarroll M, Yang C, Sun A, Turker MS, Snyder JP, Hoatlin ME (2009) Monoketone analogs of curcumin, a new class of Fanconi anemia pathway inhibitors. Mol Cancer 8:133PubMedPubMedCentralCrossRefGoogle Scholar
  86. Landau DA, Wu CJ (2013) Chronic lymphocytic leukemia: molecular heterogeneity revealed by high-throughput genomics. Genome Med 5:47PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9:759–769PubMedCrossRefPubMedCentralGoogle Scholar
  88. Lavin MF, Shiloh Y (1997) The genetic defect in ataxia-telangiectasia. Annu Rev Immunol 15:177–202PubMedCrossRefPubMedCentralGoogle Scholar
  89. Lavin MF, Scott S, Gueven N, Kozlov S, Peng C, Chen P (2004) Functional consequences of sequence alterations in the ATM gene. DNA Repair 3:1197–1205PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lee J-H, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308:551–554PubMedCrossRefPubMedCentralGoogle Scholar
  91. Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, Lee EY, Lee WH (2000) Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406:210–215PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lipkowitz S, Stern M-H, Kirsch IR (1990) Hybrid T cell receptor genes formed by interlocus recombination in normal and ataxia-telangiectasia lymphocytes. J Exp Med 172:409–418PubMedCrossRefPubMedCentralGoogle Scholar
  93. Lovly CM, Shaw AT (2014) Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies. Clin Cancer Res 20:2249–2256PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lumsden JM, McCarty T, Petiniot LK, Shen R, Barlow C, Wynn TA, Morse HC, Gearhart PJ, Wynshaw-Boris A, Max EE, Hodes RJ (2004) Immunoglobulin class switch recombination is impaired in Atm-deficient mice. J Exp Med 200:1111–1121PubMedPubMedCentralCrossRefGoogle Scholar
  95. Luo C-M, Tang W, Mekeel KL, DeFrank JS, Rani AP, Powell SN (1996) High frequency and error-prone DNA recombination in ataxia telangiectasia cell lines. J Biol Chem 271:4497–4503PubMedCrossRefPubMedCentralGoogle Scholar
  96. Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781–794PubMedCrossRefPubMedCentralGoogle Scholar
  97. Ma Y, Schwarz K, Lieber MR (2005) The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair 4:845–851PubMedCrossRefPubMedCentralGoogle Scholar
  98. Ma J, Setton J, Morris L, Albornoz PB, Barker C, Lok BH, Sherman E, Katabi N, Beal K, Ganly I, Powell SN, Lee N, Chan TA, Riaz N (2017) Genomic analysis of exceptional responders to radiotherapy reveals somatic mutations in ATM. Oncotarget 8:10312–10323PubMedPubMedCentralGoogle Scholar
  99. Matsuoka S, Huang M, Elledge SJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282:1893–1897PubMedCrossRefPubMedCentralGoogle Scholar
  100. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166PubMedCrossRefPubMedCentralGoogle Scholar
  101. Menezes DL, Holt J, Tang Y, Feng J, Barsanti P, Pan Y, Ghoddusi M, Zhang W, Thomas G, Holash J, Lees E, Taricani L (2014) A synthetic lethal screen reveals enhanced sensitivity to ATR inhibitor treatment in mantle cell lymphoma with ATM loss-of-function. Mol Cancer Res 13(1):120–129PubMedCrossRefPubMedCentralGoogle Scholar
  102. Meyn MS (1993) High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia. Science 260:1327–1330PubMedCrossRefPubMedCentralGoogle Scholar
  103. Mitui M, Nahas SA, Du LT, Yang Z, Lai CH, Nakamura K, Arroyo S, Scott S, Purayidom A, Concannon P, Lavin MF, Gatti RA (2009) Functional and computational assessment of missense variants in the ataxia-telangiectasia mutated (ATM) gene: mutations with increased cancer risk. Hum Mutat 30:12–21PubMedPubMedCentralCrossRefGoogle Scholar
  104. Moding EJ, Lee C-L, Castle KD, Oh P, Mao L, Zha S, Min HD, Ma Y, Das S, Kirsch DG (2014) Atm deletion with dual recombinase technology preferentially radiosensitizes tumor endothelium. J Clin Invest 124:3325–3338PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mohammadinejad P, Abolhassani H, Aghamohammadi A, Pourhamdi S, Ghosh S, Sadeghi B, Nasiri Kalmarzi R, Durandy A, Borkhardt A (2015) Class switch recombination process in ataxia telangiectasia patients with elevated serum levels of IgM. J Immunoass Immunochem 36:16–26CrossRefGoogle Scholar
  106. Morrison C, Sonoda E, Takao N, Shinohara A, Yamamoto K, Takeda S (2000) The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J 19:463–471PubMedPubMedCentralCrossRefGoogle Scholar
  107. Moshous D, Callebaut I, De Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, Tezcan I, Sanal O, Bertrand Y, Philippe N, Fischer A, De Villartay JP (2001) Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105:177–186PubMedCrossRefPubMedCentralGoogle Scholar
  108. Moynahan ME, Cui TY, Jasin M (2001) Homology-directed DNA repair, mitomycin-C resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 61:4842–4850PubMedPubMedCentralGoogle Scholar
  109. Mukherjee B, Kessinger C, Kobayashi J, Chen BPC, Chen DJ, Chatterjee A, Burma S (2006) DNA-PK phosphorylates histone H2AX during apoptotic DNA fragmentation in mammalian cells. DNA Repair (Amst) 5:575–590CrossRefGoogle Scholar
  110. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228PubMedCrossRefPubMedCentralGoogle Scholar
  111. Nicolas N, Moshous D, Cavazzana-Calvo M, Papadopoulo D, de Chasseval R, Le Deist F, Fischer A, de Villartay J-P (1998) A human severe combined immunodeficiency (SCID) condition with increased sensitivity to ionizing radiations and impaired V(D)J rearrangements defines a new DNA recombination/repair deficiency. J Exp Med 188:627–634PubMedPubMedCentralCrossRefGoogle Scholar
  112. Niederst MJ, Engelman JA (2013) Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci Signal 6:re6PubMedCrossRefPubMedCentralGoogle Scholar
  113. Oxford JM, Harnden DG, Parrington JM, Delhanty JD (1975) Specific chromosome aberrations in ataxia telangiectasia. J Med Genet 12:251–262PubMedPubMedCentralCrossRefGoogle Scholar
  114. Painter RB, Young BR (1980) Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci U S A 77:7315–7317PubMedPubMedCentralCrossRefGoogle Scholar
  115. Pannicke U, Ma Y, Hopfner K-P, Niewolik D, Lieber MR, Schwarz K (2004) Functional and biochemical dissection of the structure-specific nuclease ARTEMIS. EMBO J 23:1987–1997PubMedPubMedCentralCrossRefGoogle Scholar
  116. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895PubMedCrossRefPubMedCentralGoogle Scholar
  117. Pellegrini M, Celeste A, Difilippantonio S, Guo R, Wang W, Feigenbaum L, Nussenzweig A (2006) Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443:222–225PubMedCrossRefPubMedCentralGoogle Scholar
  118. Peng C-Y, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277:1501–1505PubMedCrossRefPubMedCentralGoogle Scholar
  119. Powell S, Whitaker S, Peacock J, McMillan T (1993) Ataxia telangiectasia: an investigation of the repair defect in the cell line AT5BIVA by plasmid reconstitution. Mutat Res 294:9–20PubMedCrossRefPubMedCentralGoogle Scholar
  120. Powell SN, DeFrank JS, Connell P, Eogan M, Preffer F, Dombkowski D, Tang W, Friend S (1995) Differential sensitivity of p53(−) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res 55:1643–1648PubMedPubMedCentralGoogle Scholar
  121. Price BD, Youmell MB (1996) The phosphatidylinositol 3-kinase inhibitor wortmannin sensitizes murine fibroblasts and human tumor cells to radiation and blocks induction of p53 following DNA damage. Cancer Res 56:246–250PubMedPubMedCentralGoogle Scholar
  122. Rainey MD, Charlton ME, Stanton RV, Kastan MB (2008) Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res 68:7466–7474PubMedPubMedCentralCrossRefGoogle Scholar
  123. Reaper PM, Griffiths MR, Long JM, Charrier J-D, Maccormick S, Charlton PA, Golec JMC, Pollard JR (2011) Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7:428–430PubMedCrossRefPubMedCentralGoogle Scholar
  124. Reina-San-Martin B, Chen HT, Nussenzweig A, Nussenzweig MC (2004) ATM is required for efficient recombination between immunoglobulin switch regions. J Exp Med 200:1103–1110PubMedPubMedCentralCrossRefGoogle Scholar
  125. Riballo E, Kühne M, Rief N, Doherty A, Smith GCM, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A, Parker AR, Jackson SP, Gennery A, Jeggo PA, Löbrich M (2004) A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Mol Cell 16:715–724PubMedCrossRefPubMedCentralGoogle Scholar
  126. Roossink F, Wieringa HW, Noordhuis MG, ten Hoor KA, Kok M, Slagter-Menkema L, Hollema H, de Bock GH, Pras E, de Vries EGE, de Jong S, van der Zee AGJ, Schuuring E, Wisman GBA, van Vugt MATM (2012) The role of ATM and 53BP1 as predictive markers in cervical cancer. Int J Cancer 131:2056–2066PubMedPubMedCentralCrossRefGoogle Scholar
  127. Rotman G, Shiloh Y (1998) ATM: from gene to function. Hum Mol Genet 7:1555–1563PubMedCrossRefPubMedCentralGoogle Scholar
  128. Roy K, Wang L, Makrigiorgos GM, Price BD (2006) Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity. Biochem Biophys Res Commun 344:821–826PubMedCrossRefPubMedCentralGoogle Scholar
  129. Ryan AJ, Squires S, Strutt HL, Johnson RT (1991) Camptothecin cytotoxicity in mammalian cells is associated with the induction of persistent double strand breaks in replicating DNA. Nucleic Acids Res 19:3295–3300PubMedPubMedCentralCrossRefGoogle Scholar
  130. Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85PubMedCrossRefPubMedCentralGoogle Scholar
  131. Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277:1497–1501PubMedCrossRefPubMedCentralGoogle Scholar
  132. Sandoval N, Platzer M, Rosenthal A, Dörk T, Bendix R, Skawran B, Stuhrmann M, Wegner RD, Sperling K, Banin S, Shiloh Y, Baumer A, Bernthaler U, Sennefelder H, Brohm M, Weber BH, Schindler D (1999) Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum Mol Genet 8:69–79PubMedCrossRefPubMedCentralGoogle Scholar
  133. Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT (1998) Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res 58:4375–4382PubMedPubMedCentralGoogle Scholar
  134. Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT (1999) Inhibition of ATM and ATR Kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59:4375–4382PubMedPubMedCentralGoogle Scholar
  135. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, Baer R, Lukas J, Jackson SP (2007) Human CtIP promotes DNA end resection. Nature 450:509–514PubMedPubMedCentralCrossRefGoogle Scholar
  136. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R, Patanjali SR, Simmons A, Clines GA, Sartiel A, Gatti RA, Chessa L et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753PubMedCrossRefPubMedCentralGoogle Scholar
  137. Shiloh Y (2001) ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev 11:71–77PubMedCrossRefPubMedCentralGoogle Scholar
  138. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168PubMedCrossRefPubMedCentralGoogle Scholar
  139. Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14:197–210PubMedCrossRefPubMedCentralGoogle Scholar
  140. Smith PJ, Makinson TA, Watson JV (1989) Enhanced sensitivity to camptothecin in ataxia-telangiectasia cells and its relationship with the expression of DNA topoisomerase I. Int J Radiat Biol 55:217–231PubMedCrossRefPubMedCentralGoogle Scholar
  141. So S, Davis AJ, Chen DJ (2009) Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites. J Cell Biol 187:977–990PubMedPubMedCentralCrossRefGoogle Scholar
  142. Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y (2000) Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5′-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20:3977–3987PubMedPubMedCentralCrossRefGoogle Scholar
  143. Sullivan RJ, Flaherty KT (2013) Resistance to BRAF-targeted therapy in melanoma. Eur J Cancer 49:1297–1304PubMedCrossRefPubMedCentralGoogle Scholar
  144. Sultana R, McNeill DR, Abbotts R, Mohammed MZ, Zdzienicka MZ, Qutob H, Seedhouse C, Laughton CA, Fischer PM, Patel PM, Wilson DM, Madhusudan S (2012) Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors. Int J Cancer 131:2433–2444PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sultana R, Abdel-Fatah T, Abbotts R, Hawkes C, Albarakati N, Seedhouse C, Ball G, Chan S, Rakha EA, Ellis IO, Madhusudan S (2013) Targeting XRCC1 deficiency in breast cancer for personalized therapy. Cancer Res 73:1621–1634PubMedCrossRefPubMedCentralGoogle Scholar
  146. Taylor AMR, Harnden DG, Arlett CF, Harcourt SA, Lehmann AR, Stevens S, Bridges BA (1975) Ataxia teleangiectasia: a human mutation with abnormal radiation sensitivity. Nature 258:427–429PubMedCrossRefPubMedCentralGoogle Scholar
  147. Teng P, Bateman NW, Darcy KM, Hamilton CA, Larry G, Bakkenist CJ, Conrads TP (2015) Pharmacologic inhibition of ATR and ATM offers clinically important distinctions to enhancing platinumor radiation response in ovarian, endometrial, and cervical cancer cells. Gynecol Oncol 136:554–561PubMedPubMedCentralCrossRefGoogle Scholar
  148. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–244PubMedCrossRefPubMedCentralGoogle Scholar
  149. Vo QN, Kim W-J, Cvitanovic L, Boudreau DA, Ginzinger DG, Brown KD (2004) The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene 23:9432–9437PubMedCrossRefPubMedCentralGoogle Scholar
  150. Wang J, Pluth JM, Cooper PK, Cowan MJ, Chen DJ, Yannone SM (2005) Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair (Amst) 4:556–570CrossRefGoogle Scholar
  151. Wang H, Shi LZ, Wong CCL, Han X, Hwang PYH, Truong LN, Zhu Q, Shao Z, Chen DJ, Berns MW, Yates JR, Chen L, Wu X (2013) The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair. PLoS Genet 9:25–27Google Scholar
  152. Weber AM, Ryan AJ (2015) ATM and ATR as therapeutic targets in cancer. Pharmacol Ther 149:124–138PubMedCrossRefPubMedCentralGoogle Scholar
  153. Weber AM, Bokobza SM, Devery AM, Ryan AJ (2013) Combined ATM and ATR kinase inhibition selectively kills p53-mutated non-small cell lung cancer (NSCLC) cells [abstract]. In Proceedings of the AACR-NCI-EORTC international conference: molecular targets and cancer therapeutics, Boston,MA, 2013 Oct 19–23. AACR, Philadelphia, PA. Mol Cancer Ther 2(11 Suppl):Abstract nr B91. CrossRefGoogle Scholar
  154. Weber AM, Drobnitzky N, Devery AM, Bokobza SM, Adams RA, Maughan TS, Ryan AJ (2016) Phenotypic consequences of somatic mutations in the ataxia-telangiectasia mutated gene in non-small cell lung cancer. Oncotarget 7:60807–60822PubMedPubMedCentralCrossRefGoogle Scholar
  155. Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJS, Smith G, Powell JE, Rudzki Z, Kearns P, Moss PAH, Taylor AMR, Stankovic T (2010) The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 116:4578–4587PubMedCrossRefPubMedCentralGoogle Scholar
  156. White JS, Choi S, Bakkenist CJ (2010) Transient ATM kinase inhibition disrupts DNA damage-induced sister chromatid exchange. Sci Signal 3:ra44PubMedPubMedCentralCrossRefGoogle Scholar
  157. Williamson CT, Muzik H, Turhan AG, Zamò A, O’Connor MJ, Bebb DG, Lees-Miller SP (2010) ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol Cancer Ther 9:347–357PubMedPubMedCentralCrossRefGoogle Scholar
  158. Williamson CT, Kubota E, Hamill JD, Klimowicz A, Ye R, Muzik H, Dean M, Tu L, Gilley D, Magliocco AM, McKay BC, Bebb DG, Lees-Miller SP (2012) Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53. EMBO Mol Med 4:515–527PubMedPubMedCentralCrossRefGoogle Scholar
  159. Woodbine L, Brunton H, Goodarzi AA, Shibata A, Jeggo PA (2011) Endogenously induced DNA double strand breaks arise in heterochromatic DNA regions and require ataxia telangiectasia mutated and Artemis for their repair. Nucleic Acids Res 39:6986–6997PubMedPubMedCentralCrossRefGoogle Scholar
  160. Xiao Z, Chen Z, Gunasekera AH, Sowin TJ, Rosenberg SH, Fesik S, Zhang H (2003) Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278:21767–21773PubMedCrossRefPubMedCentralGoogle Scholar
  161. Yamamoto K, Wang Y, Jiang W, Liu X, Dubois RL, Lin C-S, Ludwig T, Bakkenist CJ, Zha S (2012) Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice. J Cell Biol 198:305–313PubMedPubMedCentralCrossRefGoogle Scholar
  162. Yannone SM, Khan IS, Zhou RZ, Zhou T, Valerie K, Povirk LF (2008) Coordinate 5′ and 3′ endonucleolytic trimming of terminally blocked blunt DNA double-strand break ends by Artemis nuclease and DNA-dependent protein kinase. Nucleic Acids Res 36:3354–3365PubMedPubMedCentralCrossRefGoogle Scholar
  163. Yao S-L, Akhtar AJ, McKenna KA, Bedi GC, David S, Mack M, Rajani R, Collector MI, Jones RJ, Sharkis SJ, Fuchs EJ, Bedi A (1996) Selective radiosensitization of p53-deficient cells by ceffeine-mediated activation of p34‍cdc2 kinase. Nat Med 2:1140–1143PubMedCrossRefPubMedCentralGoogle Scholar
  164. You Z, Bailis JM (2010) DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol 20:402–409PubMedPubMedCentralCrossRefGoogle Scholar
  165. You Z, Chahwan C, Bailis J, Hunter T, Russell P (2005) ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 25:5363–5379PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yuan SSF, Chang HL, Lee EYHP (2003) Ionizing radiation-induced Rad51 nuclear focus formation is cell cycle-regulated and defective in both ATM−/− and c-Abl−/− cells. Mutat Res 525:85–92PubMedCrossRefPubMedCentralGoogle Scholar
  167. Yun J, Zhong Q, Kwak J-Y, Lee W-H (2005) Hypersensitivity of Brca1-deficient MEF to the DNA interstrand crosslinking agent mitomycin C is associated with defect in homologous recombination repair and aberrant S-phase arrest. Oncogene 24:4009–4016PubMedCrossRefPubMedCentralGoogle Scholar
  168. Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y (2006) Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 8:870–876PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, The Department of OncologyUniversity of OxfordOxfordUK

Personalised recommendations