Skip to main content

Targeting ATR for Cancer Therapy: Profile and Expectations for ATR Inhibitors

  • Chapter
  • First Online:
Targeting the DNA Damage Response for Anti-Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1064 Accesses

Abstract

ATR is a highly versatile player in the DNA damage response (DDR) that signals DNA damage via CHK1 phosphorylation to the S and G2/M cell cycle checkpoints and to promote DNA repair. It is activated by ssDNA, principally occurring due to replication stress that is caused by unrepaired endogenous DNA damage or induced by a variety of anticancer chemotherapy and ionizing radiation. Since an almost ubiquitous feature of cancer cells is loss of G1 control, e.g., through p53 mutation, it is thought that their greater dependence on S and G2/M checkpoint function may render them more susceptible to ATR inhibition. ATR promotes homologous recombination DNA repair and inter-strand cross-link repair. Impairment of ATR function by genetic means or with inhibitors increases the sensitivity of cells to a wide variety of DNA damaging chemotherapy and radiotherapy, with the greatest sensitization observed with gemcitabine and cisplatin. Early inhibitors developed in the 1990s were weak and non-specific but the encouraging data led to the development of more potent and specific inhibitors. We review here the pre-clinical chemo- and radiosensitisation data obtained with these inhibitors that has led to the entry into clinical trial, the potential to combine ATR inhibitors with other DNA repair modulators, and identification of single-agent ATR inhibitor cytotoxicity in cells with activated oncogenes and particular defects in the DDR that may result in greater replication stress or dependence on ATR for survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babior BM (1999) NADPH oxidase: an update. Blood 93(5):1464–1476

    PubMed  CAS  Google Scholar 

  • Bartkova J, Tommiska J, Oplustilova L, Aaltonen K, Tamminen A, Heikkinen T, Mistrik M, Aittomäki K, Blomqvist C, Heikkilä P, Lukas J, Nevanlinna H, Bartek J (2008) Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Mol Oncol 2:296–316

    Article  PubMed  PubMed Central  Google Scholar 

  • Berasain C, Castillo J, Perugorria MJ, Latasa MU, Prieto J, Avila MA (2009) Inflammation and liver cancer: new molecular links. Ann N Y Acad Sci 1155:206–221

    Article  PubMed  CAS  Google Scholar 

  • Boultwood J (2001) Ataxia telangiectasia gene mutations in leukaemia and lymphoma. J Clin Pathol 54(7):512–516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14:397–402

    PubMed  PubMed Central  CAS  Google Scholar 

  • Brown AD, Sager BW, Gorthi A, Tonapi SS, Brown EJ, Bishop AJR (2014) ATR suppresses endogenous DNA damage and allows completion of homologous recombination repair. PLoS One 9(3):e91222. https://doi.org/10.1371/journal.pone.0091222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N, Johansson F, Fernandez S, McGlynn P, Helleday T (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28(17):2601–2615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burdova K, Mihaljevic B, Sturzenegger A, Chappidi N, Janscak P (2015) The mismatch-binding factor MutSbeta can mediate ATR activation in response to DNA double-strand breaks. Mol Cell 59(4):603–614

    Article  PubMed  CAS  Google Scholar 

  • Caldecott KW (2003) XRCC1 and DNA strand break repair. DNA Repair 2(9):955–969

    Article  PubMed  CAS  Google Scholar 

  • Cancer Genome Atlas Network (2012a) Comprehensive molecular portraits of human breast tumours. Nature 490:61–80

    Article  CAS  Google Scholar 

  • Cancer Genome Atlas Network (2012b) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525

    Article  CAS  Google Scholar 

  • Caporali S, Falcinelli S, Starace G, Russo MT, Bonmassar E, Jiricny J, D’Atri S (2004) DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. Mol Pharmacol 66(3):478–491

    PubMed  CAS  Google Scholar 

  • Caporali S, Levati L, Starace G, Ragone G, Bonmassar E, Alvino E, D’Atri S (2008) AKT is activated in an ataxia-telangiectasia and Rad3-related-dependent manner in response to temozolomide and confers protection against drug-induced cell growth inhibition. Mol Pharmacol 74(1):173–183

    Article  PubMed  CAS  Google Scholar 

  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Article  PubMed  Google Scholar 

  • Charrier JD, Durrant SJ, Golec JM, Kay DP, Knegtel RM, MacCormick S Mortimore M, O’Donnell ME, Pinder JL, Reaper PM, Rutherford AP, Wang PS, Young SC, Pollard JR (2011) Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents. J Med Chem 54:2320–2330

    Article  PubMed  CAS  Google Scholar 

  • Chen MS, Ryan CE, Piwnica-Worms H (2003) CHK1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 23(21):7488–7497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi JH, Lindsey-Boltz LA, Kemp M, Mason AC, Wold MS, Sancar A (2010) Reconstitution of RPA-covered single-stranded DNA-activated ATR-CHK1 signaling. Proc Natl Acad Sci U S A 107(31):13660–13665

    Article  PubMed  PubMed Central  Google Scholar 

  • Cleaver JE (2016) Profile of Thomas Lindahl, Paul Modrich ans Aziz Sancar, 2015 Noel Laureates in chemistry. Proc Natl Acad Sci U S A 113(2):242–245

    Article  PubMed  CAS  Google Scholar 

  • Cliby WA, Roberts CJ, Cimprich KA, Stringer CM, Lamb JR, Schreiber SL, Friend SH (1998) Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J 17(1):159–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cliby WA, Lewis KA, Lilly KK, Kaufmann SH (2002) S phase and G2 arrests induced by topoisomerase I poisons are dependent on ATR kinase function. J Biol Chem 277(2):1599–1606

    Article  PubMed  CAS  Google Scholar 

  • Cole AJ, Dwight T, Gill AJ, Dickson KA, Zhu Y, Clarkson A, Gard GB, Maidens J, Valmadre S, Clifton-Bligh R, Marsh DJ (2016) Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing. Sci Rep 6:26191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collis SJ, Swartz MJ, Nelson WG, DeWeese TL (2003) Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors. Cancer Res 63(7):1550–1554

    PubMed  CAS  Google Scholar 

  • Collis SJ, Ciccia A, Deans AJ, Horejsi Z, Martin JS, Maslen SL, Skehel JM, Elledge SJ, West SC, Boulton SJ (2008) FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol Cell 32(3):313–324

    Article  PubMed  CAS  Google Scholar 

  • Cortez D (2003) Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases. J Biol Chem 278(39):37139–37145

    Article  PubMed  CAS  Google Scholar 

  • Cottini F, Hideshima T, Suzuki R, Tai YT, Bianchini G, Richardson PG, Anderson KC, Tonon G (2015) Synthetic lethal approaches exploiting DNA damage in aggressive myeloma. Cancer Discov 5(9):972–987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Couch FB, Bansbach CE, Driscoll R, Luzwick JW, Glick GG, Bétous R, Carroll CM, Jung SY, Qin J, Cimprich KA, Cortez D (2013) ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev 27(14):1610–1623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox KE, Marechal A, Flynn RL (2016) SMARCAL1 resolves replication stress at ALT telomeres. Cell Rep 14:1032–1040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui Y, Palii SS, Innes CL, Paules RS (2014) Depletion of ATR selectively sensitizes ATM-deficient human mammary epithelial cells to ionizing radiation and DNA-damaging agents. Cell Cycle 13(22):3541–3550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curtin NJ (2014) PARP inhibitors for anticancer Therapy. Biochem Soc Trans 42:82–88

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Grant S (2010) New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res 16(2):376–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dart DA, Adams KE, Akerman I, Lakin ND (2004) Recruitment of the cell cycle checkpoint kinase ATR to chromatin during S-phase. J Biol Chem 269:16433–16440

    Article  CAS  Google Scholar 

  • Davidson IF, Li A, Blow JJ (2006) Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision. Mol Cell 24:433–443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deans AJ, West SC (2011) DNA interstrand crosslink repair and cancer. Nat Rev Cancer 24:467–480

    Article  CAS  Google Scholar 

  • Deeg KI, Chung I, Bauer C, Rippe K (2016) Cancer Cells with Alternative Lengthening of Telomeres Do Not Display a General Hypersensitivity to ATR Inhibition. Front Oncol 6:186. https://doi.org/10.3389/fonc.2016.00186

    Article  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448:445–451

    Article  PubMed  CAS  Google Scholar 

  • Draskovic I, Londono-Vallejo A (2014) Telomere recombination and the ALT pathway: a therapeutic perspective for cancer. Curr Pharm Des 20:6466–6471

    Article  PubMed  CAS  Google Scholar 

  • Durocher D, Jackson SP (2001) DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 13(2):225–231

    Article  PubMed  CAS  Google Scholar 

  • Eich M, Roos WP, Nikolova T, Kaina B (2013) Contribution of ATM and ATR to the resistance of glioblastoma and malignant melanoma cells to the methylating anticancer drug temozolomide. Mol Cancer Ther 12(11):2529–2540

    Article  PubMed  CAS  Google Scholar 

  • Fang WH, Li GM, Longley M, Holmes J, Thilly W, Modrich P (1993) Mismatch repair and genetic stability in human cells. Cold Spring Harb Symp Quant Biol 58:597–603

    Article  PubMed  CAS  Google Scholar 

  • Flatten K, Dai NT, Vroman BT, Loegering D, Erlichman C, Karnitz LM, Kaufmann SH (2005) The role of checkpoint kinase 1 in sensitivity to topoisomerase I poisons. J Biol Chem 280(14):14349–14355

    Article  PubMed  CAS  Google Scholar 

  • Flynn RL, Cox KE, Jeitany M, Wakimoto H, Bryll AR, Ganem NJ, Bersani F, Pineda JR, Suva ML, Benes CH et al (2015) Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347:273–277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fokas E, Prevo R, Pollard JR, Reaper PM, Charlton PA, Cornelissen B, Vallis KA, Hammond EM, Olcina MM, Gillies McKenna W, Muschel RJ, Brunner TB (2012) Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis 3:e441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foote KM, Blades K, Cronin A, Fillery S, Guichard SS, Hassall L, Hickson I, Jacq X, Jewsbury PJ, McGuire TM, Nissink JW, Odedra R, Page K, Perkins P, Suleman A, Tam K, Thommes P, Broadhurst R, Wood C (2013) Discovery of 4-{4-[(3R)-3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole (AZ20): a potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity. J Med Chem 56(5):2125–2138

    Article  PubMed  CAS  Google Scholar 

  • Foote KM, Lau A, Nissink JW (2015) Drugging ATR: progress in the development of specific inhibitors for the treatment of cancer. Future Med Chem 7:873–891

    Article  PubMed  CAS  Google Scholar 

  • Gaillard H, García-Muse T, Aguilera A (2015) Replication stress and cancer. Nat Rev Cancer 15:276–289

    Article  PubMed  CAS  Google Scholar 

  • Genschel J, Modrich P (2009) Functions of MutLalpha, replication protein A (RPA), and HMGB1 in 5′-directed mismatch repair. J Biol Chem 284(32):21536–21544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilad O, Nabet BY, Ragland RL, Schoppy DW, Smith KD, Durham AC, Brown EJ (2010) Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res 70(23):9693–9702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guichard SM, Brown E, Odedra R, Hughes A, Heathcote D, Barnes J, Lau A, Powell S, Jones CD, Nissink JW, Foote KM, Jewsbury PJ, Pass M (2013) The pre-clinical in vitro and in vivo activity of AZD6738: a potent and selective inhibitor of ATR kinase. Cancer Res 73(8 Suppl):Abstract nr 3343

    Article  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355

    Article  PubMed  CAS  Google Scholar 

  • Hall AB, Newsome D, Wang Y, Boucher DM, Eustace B, Gu Y, Hare B, Johnson MA, Milton S, Murphy CE, Takemoto D, Tolman C, Wood M, Charlton P, Charrier JD, Furey B, Golec J, Reaper PM, Pollard JR (2014) Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970. Oncotarget 5:5674–5685

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammond EM, Giaccia AJ (2004) The role of ATM and ATR in the cellular response to hypoxia and re-oxygenation. DNA Repair (Amst). 3(8-9):1117–1122

    Article  PubMed  CAS  Google Scholar 

  • Hammond EM, Dorie MJ, Giaccia AJ (2004) Inhibition of ATR leads to increased sensitivity to hypoxia/reoxygenation. Cancer Res 64(18):6556–6562

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  • Haynes B, Saadat N, Myung B, Shekhar MP (2015) Crosstalk between translesion synthesis, Fanconi anemia network, and homologous recombination repair pathways in interstrand DNA crosslink repair and development of chemoresistance. Mutat Res 763:258–266

    Article  CAS  Google Scholar 

  • Hocke S, Guo Y, Job A, Orth M, Ziesch A, Lauber K, De Toni EN, Gress TM, Herbst A, Göke B, Gallmeier EA (2016) synthetic lethal screen identifies ATR-inhibition as a novel therapeutic approach for POLD1-deficient cancers. Oncotarget 7(6):7080–7095

    Article  PubMed  PubMed Central  Google Scholar 

  • Huntoon CJ, Flatten KS, Wahner Hendrickson AE, Huehls AM, Sutor SL, Kaufmann SH, Karnitz LM (2013) ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status. Cancer Res 73(12):3683–3691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurley PJ, Wilsker D, Bunz F (2007) Human cancer cells require ATR for cell cycle progression following exposure to ionizing radiation. Oncogene 26(18):2535–2542

    Article  PubMed  CAS  Google Scholar 

  • Itakura E, Umeda K, Sekoguchi E, Takata H, Ohsumi M, Matsuura A (2004) ATR-dependent phosphorylation of ATRIP in response to genotoxic stress. Biochem Biophys Res Commun 323(4):1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H, Bartek J, Yaffe MB, Hemann MT (2009) The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 23:1895–1909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones CD, Blades K, Foote KM, Guichard SM, Jewsbury PJ, McGuire T, Nissink JW, Odedra R, Tam K, Thommes P, Turner P, Wilkinson G, Wood C, Yates JW (2013) Discovery of AZD6738, a potent and selective inhibitor with the potential to test the clinical efficacy of ATR kinase inhibition in cancer patients. [abstract]. Cancer Res 73(8 Suppl):Abstract nr 2348

    Article  Google Scholar 

  • Jossé R, Martin SE, Guha R, Ormanoglu P, Pfister TD, Reaper PM, Barnes CS, Jones J, Charlton P, Pollard JR, Morris J, Doroshow JH, Pommier Y (2014) ATR inhibitors VE-821 and VX-970 sensitize cancer cells to topoisomerase i inhibitors by disabling DNA replication initiation and fork elongation responses. Cancer Res 74(23):6968–6979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kedar PS, Stefanick DF, Horton JK, Wilson SH (2008) Interaction between PARP-1 and ATR in mouse fibroblasts is blocked by PARP inhibition. DNA Repair (Amst) 7(11):1787–1798

    Article  CAS  Google Scholar 

  • Kim H, D’Andrea AD (2012) Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev 26:1393–1408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125(4):733–747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krajewska M, Fehrmann RS, Schoonen PM, Labib S, de Vries EG, Franke L, van Vugt MA (2015) ATR inhibition preferentially targets homologous recombination-deficient tumor cells. Oncogene 34(26):3474–3481

    Article  PubMed  CAS  Google Scholar 

  • Kwok M, Davies N, Agathanggelou A, Smith E, Oldreive C, Petermann E, Stewart G, Brown J, Lau A, Pratt G, Parry H, Taylor M, Moss P, Hillmen P, Stankovic T (2016) ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood 127(5):582–595

    Article  PubMed  CAS  Google Scholar 

  • Lau A, Brown E, Thomason A, Odedra R, Sheridan V, Cadogan E, Xu S, Cui A, Gavine PR, O’Connor M (2015) Pre-clinical efficacy of the ATR inhibitor AZD6738 in combination with the PARP inhibitor olaparib. Mol Cancer Ther 14(12 Suppl 2):Abstract nr C60

    Article  Google Scholar 

  • Lee J, Kumagai A, Dunphy WG (2001) Positive regulation of Wee1 by CHK1 and 14-3-3 proteins. Mol Biol Cell 12(3):551–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee KW, Tsai YS, Chiang FY, Huang JL, Ho KY, Yang YH, Kuo WR, Chen MK, Lin CS (2011) Lower ataxia telangiectasia mutated (ATM) mRNA expression is correlated with poor outcome of laryngeal and pharyngeal cancer patients. Ann Oncol 22:1088–1093

    Article  PubMed  Google Scholar 

  • Li M, Yu X (2015) The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy. Oncogene 34(26):3349–3356

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715

    Article  PubMed  CAS  Google Scholar 

  • Lindsey-Boltz LA, Sancar A (2011) Tethering DNA damage checkpoint mediator proteins topoisomerase IIbeta-binding protein 1 (TopBP1) and Claspin to DNA activates ataxia-telangiectasia mutated and RAD3-related (ATR) phosphorylation of checkpoint kinase 1 (CHK1). J Biol Chem 286(22):19229–19236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ (2000) CHK1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14(12):1448–1459

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Fang Y, Shao H, Lindsey-Boltz L, Sancar A, Modrich P (2010) Interactions of human mismatch repair proteins MutSalpha and MutLalpha with proteins of the ATR-CHK1 pathway. J Biol Chem 285(8):5974–5982

    Article  PubMed  CAS  Google Scholar 

  • Lomax ME, Folkes LK, O’Neill P (2013) Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol 25:578–585

    Article  CAS  Google Scholar 

  • Luciani MG, Oehlmann M, Blow JJ (2004) Characterization of a novel ATR-dependent, Chk1-independent, intra-S-phase checkpoint that suppresses initiation of replication in Xenopus. J Cell Sci 117(Pt 25):6019–6030

    Article  PubMed  CAS  Google Scholar 

  • Luke-Glaser S, Luke B, Grossi S, Constantinou A (2010) FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J 29(4):795

    Article  PubMed  CAS  Google Scholar 

  • Macheret M, Halazonetis TD (2015) DNA replication stress as a hallmark of cancer. Annu Rev Pathol 10:425–448

    Article  PubMed  CAS  Google Scholar 

  • Mackay DR, Ullman KS (2015) ATR and a CHK1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Mol Biol Cell 26(12):2217–2226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J, Lukas J (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288(5470):1425–1429

    Article  PubMed  CAS  Google Scholar 

  • Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH (2014) Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 15(7):465–481

    Article  PubMed  CAS  Google Scholar 

  • Massague J (2004) G1 cell-cycle control and cancer. Nature 432(7015):298–306

    Article  PubMed  CAS  Google Scholar 

  • Masters JRW, Koberle B (2003) Curing metastatic cancer: lessons from testicular germ-cell tumours. Nat Rev Cancer 3:517–525

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, ER MD III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166

    Article  PubMed  CAS  Google Scholar 

  • Menezes DL, Holt J, Tang Y, Feng J, Barsanti P, Pan Y, Ghoddusi M, Zhang W, Thomas G, Holash J, Lees E, Taricani L (2015) A synthetic lethal screen reveals enhanced sensitivity to ATR inhibitor treatment in mantle cell lymphoma with ATM loss-of-function. Mol Cancer Res 13(1):120–129

    Article  PubMed  CAS  Google Scholar 

  • Middleton FK, Patterson MJ, Elstob CJ, Fordham S, Herriott A, Wade MA, McCormick A, Edmondson R, May FE, Allan JM, Pollard JR, Common CNJ (2015) cancer-associated imbalances in the DNA damage response confer sensitivity to single agent ATR inhibition. Oncotarget 6(32):32396–32409

    Article  PubMed  PubMed Central  Google Scholar 

  • Mlasenov E, Mahin S, Soni A, Illiakis G (2016) DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: cell cycle and proliferation-dependent regulation. Semin Cancer Biol 37-38:51–64

    Article  CAS  Google Scholar 

  • Mohni KN, Kavanaugh GM, Cortez D (2014) ATR pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency. Cancer Res 74(10):2835–2845. https://doi.org/10.1158/0008-5472.CAN-13-3229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohni KN, Thompson PS, Luzwick JW, Glick GG, Pendleton CS, Lehmann BD, Pietenpol JA, Cortez DA (2015) Synthetic lethal screen identifies DNA repair pathways that sensitize cancer cells to combined ATR inhibition and cisplatin treatments. PLoS One 10(5):e0125482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moiseeva O, Bourdeau V, Roux A, Deschenes-Simard X, Ferbeyre G (2009) Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol 29:4495–4507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morishima K, Sakamoto S, Kobayashi J, Izumi H, Suda T, Matsumoto Y, Tauchi H, Ide H, Komatsu K, Matsuura S (2007) TopBP1 associates with NBS1 and is involved in homologous recombination repair. Biochem Biophys Res Commun 362(4):872–879

    Article  PubMed  CAS  Google Scholar 

  • Moser J, Kool H, Giakzidis I, Caldecott K, Mullenders LH, Fousteri MI (2007) Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol Cell 27(2):311–323

    Article  PubMed  CAS  Google Scholar 

  • Murga M, Bunting S, Montaña MF, Soria R, Mulero F, Cañamero M, Lee Y, McKinnon PJ, Nussenzweig A, Fernandez-Capetillo O (2009) A mouse model of ATRSeckel shows embryonic replicative stress and accelerated aging. Nat Genet 41:891–899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montaña MF, D’Artista L, Schleker T, Guerra C, Garcia E, Barbacid M, Hidalgo M, Amati B, Fernandez-Capetillo O (2011) Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 18(12):1331–1335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Myers K, Gagou ME, Zuazua-Villar P, Rodriguez R, Meuth M (2009) ATR and Chk1 suppress a caspase-3–dependent apoptotic response following DNA replication stress. PLoS Genet 5(1):e1000324. https://doi.org/10.1371/journal.pgen.1000324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nghiem P, Park PK, Kim YS, Vaziri C, Schreiber SL (2001) ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc Natl Acad Sci U S A 98(16):9092–9097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nghiem P, Park PK, Kim Ys YS, Desai BN, Schreiber SL (2002) ATR is not required for p53 activation but synergizes with p53 in the replication checkpoint. J Biol Chem 277(6):4428–4434

    Article  PubMed  CAS  Google Scholar 

  • Nishida H, Tatewaki N, Nakajima Y, Magara T, Ko KM, Hamamori Y, Konishi T (2009) Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response. Nucleic Acids Res 37(17):5678–5689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA (2003) A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33(4):497–501

    Article  PubMed  CAS  Google Scholar 

  • O’Driscoll M, Gennery AR, Seidel J, Concannon P, Jeggo PA (2004) An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair (Amst) 3(8-9):1227–1235

    Article  CAS  Google Scholar 

  • Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2(1):a001008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parsels LA, Qian Y, Tanska DM, Gross M, Zhao L, Hassan MC, Arumugarajah S, Parsels JD, Hylander-Gans L, Simeone DM, Morosini D, Brown JL, Zabludoff SD, Maybaum J, Lawrence TS, Morgan MA (2011) Assessment of CHK1 phosphorylation as a pharmacodynamic biomarker of CHK1 inhibition. Clin Cancer Res 17(11):3706–3715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, Nones K, Cowin P, Alsop K, Bailey PJ, Kassahn KS, Newell F, Quinn MC, Kazakoff S, Quek K, Wilhelm-Benartzi C, Curry E, Leong HS (2015) Australian Ovarian Cancer Study Group, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature 521:489–494

    Article  PubMed  CAS  Google Scholar 

  • Peasland A, Wang LZ, Rowling E, Kyle S, Chen T, Hopkins A, Cliby WA, Sarkaria J, Beale G, Edmondson RJ, Curtin NJ (2011) Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br J Cancer 105(3):372–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pires IM, Olcina MM, Anbalagan S, Pollard JR, Reaper PM, Charlton PA, McKenna WG, Hammond EM (2012) Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Br J Cancer 107(2):291–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pollard J, Reaper P, Peek A, Hughes S, Gladwell S, Jones J, Chiu P, Wood M, Tolman C, Johnson M, Littlewood P, Penney M, McDermott K, Hare B, Fields SZ, Asmal M, O’Carrigan B, Yap TA (2016a) Defining optimal dose schedules for ATR inhibitors in combination with DNA damaging drugs: informing clinical studies of VX-970, the first-in-class ATR inhibitor. Cancer Res 76(14 Suppl):Abstract nr 3717

    Article  Google Scholar 

  • Pollard J, Reaper P, Peek A, Hughes S, Dheja H, Cummings S, Larbi K, Penney M, Sullivan J, Takemoto D, Defranco C (2016b) Pre-clinical combinations of ATR and PARP inhibitors: defining target patient populations and dose schedule. Cancer Res 76(14 Suppl):Abstract nr 3711

    Article  Google Scholar 

  • Prevo R, Fokas E, Reaper PM, Charlton PA, Pollard JR, McKenna WG, Muschel RJ, Brunner TB (2012) The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol Ther 13(11):1072–1081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reaper PM, Griffiths MR, Long JM, Charrier JD, Maccormick S, Charlton PA, Golec JM, Pollard JR (2011) Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7(7):428–430

    Article  PubMed  CAS  Google Scholar 

  • Ringborg U, Bergqvist D, Brorsson B, Cavallin-StÃ¥hl E, Ceberg J, Einhorn N, Frödin JE, Järhult J, Lamnevik G, Lindholm C, Littbrand B, Norlund A, Nylén U, Rosén M, Svensson H, Möller TR (2003) The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001 — summary and conclusions. Acta Oncol 42:357–365

    Article  PubMed  Google Scholar 

  • Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G, Zediak VP, Velez M, Bhandoola A, Deletion BEJ (2007) of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1:113–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sangster-Guity N, Conrad BH, Papadopoulos N, Bunz F (2011) ATR mediates cisplatin resistance in a p53 genotype-specific manner. Oncogene 30(22):2526–2533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanjiv K, Hagenkort A, Calderón-Montaño JM, Koolmeister T, Reaper PM, Mortusewicz O, Jacques SA, Kuiper RV, Schultz N, Scobie M, Charlton PA, Pollard JR, Berglund UW, Altun M, Helleday T (2016) Cancer-specific synthetic lethality between ATR and CHK1 kinase activities. Cell Rep 14(2):298–309

    Article  PubMed  CAS  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59(17):4375–4382

    PubMed  CAS  Google Scholar 

  • Schaffner C, Stilgenbauer S, Rappold GA, Döhner H, Lichter P, Somatic ATM (1999) mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood 94(2):748–753

    PubMed  CAS  Google Scholar 

  • Schoppy DW, Ragland RL, Gilad O, Shastri N, Peters AA, Murga M et al (2012) Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR. J Clin Invest 122:241–252

    Article  PubMed  CAS  Google Scholar 

  • Schwab RA, Blackford AN, Niedzwiedz W (2010) ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J 29(4):806–818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiotani B, Zou L (2009) Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol Cell 33(5):547–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sibghatullah HI, Carlton W, Sancar A (1989) Human nucleotide excision repair in vitro: repair of pyrimidine dimers, psoralen and cisplatin adducts by HeLa cell-free extract. Nucleic Acids Res 17(12):4471–4484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh TR, Ali AM, Paramasivam M, Pradhan A, Wahengbam K, Seidman MM, Meetei AR (2013) ATR-dependent phosphorylation of FANCM at serine 1045 is essential for FANCM functions. Cancer Res 73(14):4300–4310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sorensen CS, Syljuasen RG (2012) Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res 40(2):477–486

    Article  PubMed  CAS  Google Scholar 

  • Sorensen CS, Syljuasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK, Zhou BB, Bartek J, Lukas J (2003) CHK1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3(3):247–258

    Article  PubMed  CAS  Google Scholar 

  • Sorensen CS, Syljuasen RG, Lukas J, Bartek J (2004) ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate CHK1 and Cdc25A in the absence of DNA damage. Cell Cycle 3(7):941–945

    Article  PubMed  CAS  Google Scholar 

  • Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896

    Article  PubMed  CAS  Google Scholar 

  • Sugimura K, Takebayashi S, Taguchi H, Takeda S, Okumura K (2008) PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J Cell Biol 183(7):1203–1212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sultana R, Abdel-Fatah T, Perry C, Moseley P, Albarakti N, Mohan V, Seedhouse C, Chan S, Madhusudan S (2013) Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS One 8(2):e57098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  PubMed  CAS  Google Scholar 

  • Taylor EM, Lindsay HD (2016) DNA replication stress and cancer: cause or cure? Future Oncol 12:221–237

    Article  PubMed  CAS  Google Scholar 

  • Teng PN, Bateman NW, Darcy KM, Hamilton CA, Maxwell GL, Bakkenist CJ, Conrads TP (2015) Pharmacologic inhibition of ATR and ATM offers clinically important distinctions to enhancing platinum or radiation response in ovarian, endometrial, and cervical cancer cells. Gynecol Oncol 136(3):554–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • The Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  PubMed Central  CAS  Google Scholar 

  • Toledo LI, Murga M, Zur R, Soria R, Rodriguez A, Martinez S, Oyarzabal J, Pastor J, Bischoff JR, Fernandez-Capetillo O (2011) A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol 18(6):721–727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toledo LI, Altmeyer M, Rask MB, Lukas C, Larsen DH, Povlsen LK, Bekker-Jensen S, Mailand N, Bartek J, Lukas J (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155(5):1088–1103

    Article  PubMed  CAS  Google Scholar 

  • Tomida J, Itaya A, Shigechi T, Unno J, Uchida E, Ikura M, Masuda Y, Matsuda S, Adachi J, Kobayashi M, Meetei AR, Maehara Y, Yamamoto K, Kamiya K, Matsuura A, Matsuda T, Ikura T, Ishiai M, Takata M (2013) A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA cross-link repair. Nucleic Acids Res 41(14):6930–6941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tutt A, Ellis P, Kilburn L, Gilett C, Pinder S, Abraham J, Barrett S, Barrett-Lee P, Chan S, Cheang M, Fox L, Grigoriadis A, Harper-Wynne C, Hatton M, Kernaghan S, Owen J, Parker P, Rahman N, Roylance R, Smith I, Thompson R, Tovey H, Wardley A, Wilson G, Harries M, Bliss J (2015) The TNT trial: a randomized phase III trial of carboplatin (C) compared with docetaxel (D) for patients with metastatic or recurrent locally advanced triple negative or BRCA1/2 breast cancer (CRUK/07/012). Cancer Res 75(9 Suppl):Abstract nr S3-01

    Article  Google Scholar 

  • Unsal-Kacmaz K, Sancar A (2004) Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. Mol Cell Biol 24(3):1292–1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Usanova S, Piée-Staffa A, Sied U, Thomale J, Schneider A, Kaina B, Köberle B (2010) Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression. Mol Cancer 9:248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vendetti FP, Lau A, Schamus S, Conrads TP, O’Connor MJ, Bakkenist CJ (2015) The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget 6(42):44289–44305

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner JM, Karnitz LM (2009) Cisplatin-induced DNA damage activates replication checkpoint signaling components that differentially affect tumour cell survival. Mol Pharmacol 76(1):208–214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallace SS, Murphy DL, Sweasy JB (2012) Base excision repair and cancer. Cancer Lett 327(1-2):73–89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Qin J (2003) MSH2 and ATR form a signaling module and regulate two branches of the damage response to DNA methylation. Proc Natl Acad Sci U S A 100(26):15387–15392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Wang H, Powell SN, Iliakis G, Wang Y (2004) ATR affecting cell radiosensitivity is dependent on homologous recombination repair but independent of nonhomologous end joining. Cancer Res 64(19):7139–7143

    Article  PubMed  CAS  Google Scholar 

  • Weber AM, Drobnitzky N, Devery AM, Bokobza SM, Adams RA, Maughan TS, Ryan AJ (2016) Phenotypic consequences of somatic mutations in the ataxia-telangiectasia mutated gene in non-small cell lung cancer. Oncotarget 7(38):60807. https://doi.org/10.18632/oncotarget.11845

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilsker D, Bunz F (2007) Loss of ataxia telangiectasia mutated- and Rad3-related function potentiates the effects of chemotherapeutic drugs on cancer cell survival. Mol Cancer Ther 6(4):1406–1413

    Article  PubMed  CAS  Google Scholar 

  • Wilsker D, Chung JH, Pradilla I, Petermann E, Helleday T, Bunz F (2012) Targeted mutations in the ATR pathway define agent-specific requirements for cancer cell growth and survival. Mol Cancer Ther 11(1):98–107

    Article  PubMed  CAS  Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(Pt 1):17–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright JA, Keegan KS, Herendeen DR, Bentley NJ, Carr AM, Hoekstra MF, Concannon P (1998) Protein kinase mutants of human ATR increase sensitivity to UV and ionizing radiation and abrogate cell cycle checkpoint control. Proc Natl Acad Sci U S A 95(13):7445–7450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao Z, Chen Z, Gunasekera AH, Sowin TJ, Rosenberg SH, Fesik S, Zhang H (2003) CHK1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278(24):21767–21773

    Article  PubMed  CAS  Google Scholar 

  • Yamane K, Taylor K, Kinsella TJ (2004) Mismatch repair-mediated G2/M arrest by 6-thioguanine involves the ATR-CHK1 pathway. Biochem Biophys Res Commun 318(1):297–302

    Article  PubMed  CAS  Google Scholar 

  • Yang XH, Shiotani B, Classon M, Zou L (2008) Chk1 and Claspin potentiate PCNA ubiquitination. Genes Dev 22(9):1147–1152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao H, Piwnica-Worms H (2001) ATR-mediated checkpoint pathways regulate phosphorylation and activation of human CHK1. Mol Cell Biol 21(13):4129–4139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300(5625):1542–1548

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Pollard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Curtin, N., Pollard, J. (2018). Targeting ATR for Cancer Therapy: Profile and Expectations for ATR Inhibitors. In: Pollard, J., Curtin, N. (eds) Targeting the DNA Damage Response for Anti-Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-75836-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75836-7_4

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-75834-3

  • Online ISBN: 978-3-319-75836-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics