Advertisement

Control of DNA Replication by ATR

  • Emilio Lecona
  • Oscar Fernández-Capetillo
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

DNA replication needs to be carefully controlled to prevent genomic instability and ensure cellular fitness. ATR is a PI3K-like kinase and is a central factor supervising the correct completion of DNA replication. The recruitment, activation and specific substrate recognition of ATR is tightly regulated to promote differential responses at a local (fork), regional (replication factory) and global (nucleus) level. Both during normal S phase or in response to the stalling of replication forks, ATR is responsible for fork stabilization and repair, as well as checkpoint activation together with its substrate, the CHK1 kinase. Malignant transformation is accompanied by oncogenic mutations that promote unscheduled entry into S phase and an increase in problems during DNA replication. This renders cancer cells particularly dependent on a proficient replication stress response for their survival, making the ATR-CHK1 pathway an attractive target for cancer treatment. In this chapter, we review the mechanisms of ATR activation, its downstream effects, and the functions of this pathway in cancer.

Keywords

ATR CHK1 DNA replication Replication stress Cancer 

References

  1. Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aye Y, Li M, Long MJ, Weiss RS (2015) Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 34:2011–2021PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bagley BN, Keane TM, Maklakova VI, Marshall JG, Lester RA, Cancel MM, Paulsen AR, Bendzick LE, Been RA, Kogan SC, Cormier RT, Kendziorski C, Adams DJ, Collier LS (2012) A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis. PLoS Genet 8:e1003034PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ball HL, Cortez D (2005) ATRIP oligomerization is required for ATR-dependent checkpoint signaling. J Biol Chem 280:31390–31396PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ball HL, Myers JS, Cortez D (2005) ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Mol Biol Cell 16:2372–2381PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baretic D, Williams RL (2014) PIKKs – the solenoid nest where partners and kinases meet. Curr Opin Struct Biol 29:134–142PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Orntoft T, Lukas J, Kittas C, Helleday T, Halazonetis TD, Bartek J, Gorgoulis VG (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bastos de Oliveira FM, Kim D, Cussiol JR, Das J, Jeong MC, Doerfler L, Schmidt KH, Yu H, Smolka MB (2015) Phosphoproteomics reveals distinct modes of Mec1/ATR signaling during DNA replication. Mol Cell 57:1124–1132PubMedCrossRefPubMedCentralGoogle Scholar
  9. Berti M, Vindigni A (2016) Replication stress: getting back on track. Nat Struct Mol Biol 23:103–109PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blow JJ, GE XQ, Jackson DA (2011) How dormant origins promote complete genome replication. Trends Biochem Sci 36:405–414PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boos D, Sanchez-Pulido L, Rappas M, Pearl LH, Oliver AW, Ponting CP, Diffley JF (2011) Regulation of DNA replication through Sld3-Dpb11 interaction is conserved from yeast to humans. Curr Biol 21:1152–1157PubMedCrossRefPubMedCentralGoogle Scholar
  13. Broustas CG, Lieberman HB (2012) Contributions of Rad9 to tumorigenesis. J Cell Biochem 113:742–751PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14:397–402PubMedPubMedCentralGoogle Scholar
  15. Buisson R, Boisvert JL, Benes CH, Zou L (2015) Distinct but concerted roles of ATR, DNA-PK, and Chk1 in countering replication stress during S phase. Mol Cell 59:1011–1024PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bursomanno S, Beli P, Khan AM, Minocherhomji S, Wagner SA, Bekker-Jensen S, Mailand N, Choudhary C, Hickson ID, Liu Y (2015) Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells. DNA Repair (Amst) 25:84–96CrossRefGoogle Scholar
  17. Charrier JD, Durrant SJ, Golec JM, Kay DP, Knegtel RM, Maccormick S, Mortimore M, O’donnell ME, Pinder JL, Reaper PM, Rutherford AP, Wang PS, Young SC, Pollard JR (2011) Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents. J Med Chem 54:2320–2330PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen MS, Ryan CE, Piwnica-Worms H (2003) Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 23:7488–7497PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen YH, Jones MJ, Yin Y, Crist SB, Colnaghi L, Sims RJ 3rd, Rothenberg E, Jallepalli PV, Huang TT (2015) ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol Cell 58:323–338PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chini CC, Chen J (2003) Human Claspin is required for replication checkpoint control. J Biol Chem 278:30057–30062PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chini CC, Chen J (2006) Repeated phosphopeptide motifs in human Claspin are phosphorylated by Chk1 and mediate Claspin function. J Biol Chem 281:33276–33282PubMedCrossRefPubMedCentralGoogle Scholar
  22. Choi JH, Lindsey-Boltz LA, Kemp M, Mason AC, Wold MS, Sancar A (2010) Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling. Proc Natl Acad Sci U S A 107:13660–13665PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ciccia A, Bredemeyer AL, Sowa ME, Terret ME, Jallepalli PV, Harper JW, Elledge SJ (2009) The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev 23:2415–2425PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cimprich KA, Shin TB, Keith CT, Schreiber SL (1996) cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc Natl Acad Sci U S A 93:2850–2855PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cortez D, Guntuku S, Qin J, Elledge SJ (2001) ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cortez D, Glick G, Elledge SJ (2004) Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci U S A 101:10078–10083PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cotta-Ramusino C, McDonald ER 3rd, Hurov K, Sowa ME, Harper JW, Elledge SJ (2011) A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science 332:1313–1317PubMedPubMedCentralCrossRefGoogle Scholar
  28. Couch FB, Bansbach CE, Driscoll R, Luzwick JW, Glick GG, Betous R, Carroll CM, Jung SY, Qin J, Cimprich KA, Cortez D (2013) ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev 27:1610–1623PubMedPubMedCentralCrossRefGoogle Scholar
  29. D’Angiolella V, Donato V, Forrester FM, Jeong YT, Pellacani C, Kudo Y, Saraf A, Florens L, Washburn MP, Pagano M (2012) Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149:1023–1034PubMedPubMedCentralCrossRefGoogle Scholar
  30. Davies SL, North PS, Hickson ID (2007) Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat Struct Mol Biol 14:677–679PubMedCrossRefPubMedCentralGoogle Scholar
  31. de Klein A, Muijtjens M, Van Os R, Verhoeven Y, Smit B, Carr AM, Lehmann AR, Hoeijmakers JH (2000) Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol 10:479–482PubMedCrossRefPubMedCentralGoogle Scholar
  32. Delacroix S, Wagner JM, Kobayashi M, Yamamoto K, Karnitz LM (2007) The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 21:1472–1477PubMedPubMedCentralCrossRefGoogle Scholar
  33. Derenzini E, Agostinelli C, Imbrogno E, Iacobucci I, Casadei B, Brighenti E, Righi S, Fuligni F, Ghelli Luserna Di Rora A, Ferrari A, Martinelli G, Pileri S, Zinzani PL (2015) Constitutive activation of the DNA damage response pathway as a novel therapeutic target in diffuse large B-cell lymphoma. Oncotarget 6:6553–6569PubMedPubMedCentralCrossRefGoogle Scholar
  34. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d’Adda Di Fagagna F (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448:445–451PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dungrawala H, Rose KL, Bhat KP, Mohni KN, Glick GG, Couch FB, Cortez D (2015) The replication checkpoint prevents two types of fork collapse without regulating replisome stability. Mol Cell 59:998–1010PubMedPubMedCentralCrossRefGoogle Scholar
  37. Duursma AM, Driscoll R, Elias JE, Cimprich KA (2013) A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol Cell 50:116–122PubMedPubMedCentralCrossRefGoogle Scholar
  38. Edwards RJ, Bentley NJ, Carr AM (1999) A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins. Nat Cell Biol 1:393–398PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ekholm-Reed S, Mendez J, Tedesco D, Zetterberg A, Stillman B, Reed SI (2004) Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol 165:789–800PubMedPubMedCentralCrossRefGoogle Scholar
  40. Farber S, Diamond LK (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med 238:787–793PubMedCrossRefPubMedCentralGoogle Scholar
  41. Faustrup H, Bekker-Jensen S, Bartek J, Lukas J, Mailand N (2009) USP7 counteracts SCFbetaTrCP- but not APCCdh1-mediated proteolysis of Claspin. J Cell Biol 184:13–19PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fernandez-Capetillo O (2010) Intrauterine programming of ageing. EMBO Rep 11:32–36PubMedCrossRefPubMedCentralGoogle Scholar
  43. Foote KM, Blades K, Cronin A, Fillery S, Guichard SS, Hassall L, Hickson I, Jacq X, Jewsbury PJ, McGuire TM, Nissink JW, Odedra R, Page K, Perkins P, Suleman A, Tam K, Thommes P, Broadhurst R, Wood C (2013) Discovery of 4-{4-[(3R)-3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-y l}-1H-indole (AZ20): a potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity. J Med Chem 56:2125–2138PubMedCrossRefPubMedCentralGoogle Scholar
  44. Ge XQ, Blow JJ (2010) Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J Cell Biol 191:1285–1297PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ge XQ, Jackson DA, Blow JJ (2007) Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 21:3331–3341PubMedPubMedCentralCrossRefGoogle Scholar
  46. Guo C, Kumagai A, Schlacher K, Shevchenko A, Shevchenko A, Dunphy WG (2015) Interaction of Chk1 with Treslin negatively regulates the initiation of chromosomal DNA replication. Mol Cell 57:492–505PubMedCrossRefPubMedCentralGoogle Scholar
  47. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hao J, de Renty C, Li Y, Xiao H, Kemp MG, Han Z, Depamphilis ML, Zhu W (2015) And-1 coordinates with Claspin for efficient Chk1 activation in response to replication stress. EMBO J 34:2096–2110PubMedPubMedCentralCrossRefGoogle Scholar
  50. Heffernan TP, Unsal-Kacmaz K, Heinloth AN, Simpson DA, Paules RS, Sancar A, Cordeiro-Stone M, Kaufmann WK (2007) Cdc7-Dbf4 and the human S checkpoint response to UVC. J Biol Chem 282:9458–9468PubMedPubMedCentralCrossRefGoogle Scholar
  51. Helmrich A, Ballarino M, Nudler E, Tora L (2013) Transcription-replication encounters, consequences and genomic instability. Nat Struct Mol Biol 20:412–418PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hills SA, Diffley JF (2014) DNA replication and oncogene-induced replicative stress. Curr Biol 24:R435–R444PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hoglund A, Nilsson LM, Muralidharan SV, Hasvold LA, Merta P, Rudelius M, Nikolova V, Keller U, Nilsson JA (2011) Therapeutic implications for the induced levels of Chk1 in Myc-expressing cancer cells. Clin Cancer Res 17:7067–7079PubMedCrossRefPubMedCentralGoogle Scholar
  54. Ibarra A, Schwob E, Mendez J (2008) Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad Sci U S A 105:8956–8961PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jeong SY, Kumagai A, Lee J, Dunphy WG (2003) Phosphorylated Claspin interacts with a phosphate-binding site in the kinase domain of Chk1 during ATR-mediated activation. J Biol Chem 278:46782–46788PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jones RM, Mortusewicz O, Afzal I, Lorvellec M, Garcia P, Helleday T, Petermann E (2013) Increased replication initiation and conflicts with transcription underlie cyclin E-induced replication stress. Oncogene 32:3744–3753PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kang SA, Pacold ME, Cervantes CL, Lim D, Lou HJ, Ottina K, Gray NS, Turk BE, Yaffe MB, Sabatini DM (2013) mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341:1236566PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kemp MG, Akan Z, Yilmaz S, Grillo M, Smith-Roe SL, Kang TH, Cordeiro-Stone M, Kaufmann WK, Abraham RT, Sancar A, Unsal-Kacmaz K (2010) Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress. J Biol Chem 285:16562–16571PubMedPubMedCentralCrossRefGoogle Scholar
  59. Koundrioukoff S, Carignon S, Techer H, Letessier A, Brison O, Debatisse M (2013) Stepwise activation of the ATR signaling pathway upon increasing replication stress impacts fragile site integrity. PLoS Genet 9:e1003643PubMedPubMedCentralCrossRefGoogle Scholar
  60. Krajewska M, Fehrmann RS, Schoonen PM, Labib S, de Vries EG, Franke L, Van Vugt MA (2015) ATR inhibition preferentially targets homologous recombination-deficient tumor cells. Oncogene 34:3474–3481PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kumagai A, Dunphy WG (2000) Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6:839–849PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kumagai A, Dunphy WG (2003) Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1. Nat Cell Biol 5:161–165PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kumagai A, Kim SM, Dunphy WG (2004) Claspin and the activated form of ATR-ATRIP collaborate in the activation of Chk1. J Biol Chem 279:49599–49608PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kumagai A, Lee J, Yoo HY, Dunphy WG (2006) TopBP1 activates the ATR-ATRIP complex. Cell 124:943–955PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2011) Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. J Cell Biol 193:995–1007PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lecona E, Fernandez-Capetillo O (2014) Replication stress and cancer: it takes two to tango. Exp Cell Res 329:26–34PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lee J, Dunphy WG (2013) The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Mol Biol Cell 24:1343–1353PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lee J, Kumagai A, Dunphy WG (2001) Positive regulation of Wee1 by Chk1 and 14-3-3 proteins. Mol Biol Cell 12:551–563PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lee J, Kumagai A, Dunphy WG (2007) The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 282:28036–28044PubMedCrossRefPubMedCentralGoogle Scholar
  70. Lin SJ, Wardlaw CP, Morishita T, Miyabe I, Chahwan C, Caspari T, Schmidt U, Carr AM, Garcia V (2012) The Rad4(TopBP1) ATR-activation domain functions in G1/S phase in a chromatin-dependent manner. PLoS Genet 8:e1002801PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lindqvist A, Rodriguez-Bravo V, Medema RH (2009) The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J Cell Biol 185:193–202PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lindsey-Boltz LA, Kemp MG, Capp C, Sancar A (2015) RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling. Cell Cycle 14:99–108PubMedPubMedCentralCrossRefGoogle Scholar
  73. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, Demayo F, Bradley A, Donehower LA, Elledge SJ (2000) Chk1 is an essential kinase that is regulated by ATR and required for the G(2)/M DNA damage checkpoint. Genes Dev 14:1448–1459PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liu S, Bekker-Jensen S, Mailand N, Lukas C, Bartek J, Lukas J (2006) Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol Cell Biol 26:6056–6064PubMedPubMedCentralCrossRefGoogle Scholar
  75. Liu S, Shiotani B, Lahiri M, Marechal A, Tse A, Leung CC, Glover JN, Yang XH, Zou L (2011) ATR autophosphorylation as a molecular switch for checkpoint activation. Mol Cell 43:192–202PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lopez-Contreras AJ, Gutierrez-Martinez P, Specks J, Rodrigo-Perez S, Fernandez-Capetillo O (2012) An extra allele of Chk1 limits oncogene-induced replicative stress and promotes transformation. J Exp Med 209:455–461PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lopez-Contreras AJ, Ruppen I, Nieto-Soler M, Murga M, Rodriguez-Acebes S, Remeseiro S, Rodrigo-Perez S, Rojas AM, Mendez J, Munoz J, Fernandez-Capetillo O (2013) A proteomic characterization of factors enriched at nascent DNA molecules. Cell Rep 3:1105–1116PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lopez-Contreras AJ, Specks J, Barlow JH, Ambrogio C, Desler C, Vikingsson S, Rodrigo-Perez S, Green H, Rasmussen LJ, Murga M, Nussenzweig A, Fernandez-Capetillo O (2015) Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice. Genes Dev 29:690–695PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lossaint G, Larroque M, Ribeyre C, Bec N, Larroque C, Decaillet C, Gari K, Constantinou A (2013) FANCD2 binds MCM proteins and controls replisome function upon activation of s phase checkpoint signaling. Mol Cell 51:678–690PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lovejoy CA, Cortez D (2009) Common mechanisms of PIKK regulation. DNA Repair (Amst) 8:1004–1008CrossRefGoogle Scholar
  81. Lukas C, Falck J, Bartkova J, Bartek J, Lukas J (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5:255–260PubMedCrossRefPubMedCentralGoogle Scholar
  82. Luzwick JW, Nam EA, Zhao R, Cortez D (2014) Mutation of serine 1333 in the ATR HEAT repeats creates a hyperactive kinase. PLoS One 9:e99397PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J, Lukas J (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288:1425–1429PubMedCrossRefPubMedCentralGoogle Scholar
  84. Mailand N, Bekker-Jensen S, Bartek J, Lukas J (2006) Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 23:307–318PubMedCrossRefPubMedCentralGoogle Scholar
  85. Mamely I, van Vugt MA, Smits VA, Semple JI, Lemmens B, Perrakis A, Medema RH, Freire R (2006) Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol 16:1950–1955PubMedCrossRefPubMedCentralGoogle Scholar
  86. Marechal A, Li JM, Ji XY, Wu CS, Yazinski SA, Nguyen HD, Liu S, Jimenez AE, Jin J, Zou L (2014) PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol Cell 53:235–246PubMedCrossRefPubMedCentralGoogle Scholar
  87. Martin Y, Cabrera E, Amoedo H, Hernandez-Perez S, Dominguez-Kelly R, Freire R (2015) USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination. Oncogene 34:1058–1063PubMedCrossRefPubMedCentralGoogle Scholar
  88. Matsuoka S, Ballif BA, Smogorzewska A, Mcdonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166PubMedCrossRefPubMedCentralGoogle Scholar
  89. Maya-Mendoza A, Petermann E, Gillespie DA, Caldecott KW, Jackson DA (2007) Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J 26:2719–2731PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mordes DA, Glick GG, Zhao R, Cortez D (2008a) TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev 22:1478–1489PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mordes DA, Nam EA, Cortez D (2008b) Dpb11 activates the Mec1-Ddc2 complex. Proc Natl Acad Sci U S A 105:18730–18734PubMedPubMedCentralCrossRefGoogle Scholar
  92. Murga M, Bunting S, Montana MF, Soria R, Mulero F, Canamero M, Lee Y, Mckinnon PJ, Nussenzweig A, Fernandez-Capetillo O (2009) A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat Genet 41:891–898PubMedPubMedCentralCrossRefGoogle Scholar
  93. Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montana MF, D’Artista L, Schleker T, Guerra C, Garcia E, Barbacid M, Hidalgo M, Amati B, Fernandez-Capetillo O (2011) Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 18:1331–1335PubMedPubMedCentralCrossRefGoogle Scholar
  94. Murphy AK, Fitzgerald M, Ro T, Kim JH, Rabinowitsch AI, Chowdhury D, Schildkraut CL, Borowiec JA (2014) Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery. J Cell Biol 206:493–507PubMedPubMedCentralCrossRefGoogle Scholar
  95. O’Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA (2003) A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33:497–501PubMedCrossRefPubMedCentralGoogle Scholar
  96. Ogi T, Walker S, Stiff T, Hobson E, Limsirichaikul S, Carpenter G, Prescott K, Suri M, Byrd PJ, Matsuse M, Mitsutake N, Nakazawa Y, Vasudevan P, Barrow M, Stewart GS, Taylor AM, O’Driscoll M, Jeggo PA (2012) Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel syndrome. PLoS Genet 8:e1002945PubMedPubMedCentralCrossRefGoogle Scholar
  97. Paciotti V, Clerici M, Lucchini G, Longhese MP (2000) The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev 14:2046–2059PubMedPubMedCentralGoogle Scholar
  98. Parrilla-Castellar ER, Arlander SJ, Karnitz L (2004) Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 3:1009–1014CrossRefGoogle Scholar
  99. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277:1501–1505PubMedCrossRefPubMedCentralGoogle Scholar
  100. Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE, Pagano M (2006) SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23:319–329PubMedCrossRefPubMedCentralGoogle Scholar
  101. Petermann E, Woodcock M, Helleday T (2010) Chk1 promotes replication fork progression by controlling replication initiation. Proc Natl Acad Sci U S A 107:16090–16095PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pichierri P, Rosselli F, Franchitto A (2003) Werner’s syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle. Oncogene 22:1491–1500PubMedCrossRefPubMedCentralGoogle Scholar
  103. Pruitt SC, Bailey KJ, Freeland A (2007) Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer. Stem Cells 25:3121–3132PubMedCrossRefPubMedCentralGoogle Scholar
  104. Psakhye I, Jentsch S (2012) Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151:807–820PubMedCrossRefPubMedCentralGoogle Scholar
  105. Reaper PM, Griffiths MR, Long JM, Charrier JD, Maccormick S, Charlton PA, Golec JM, Pollard JR (2011) Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7:428–430PubMedCrossRefPubMedCentralGoogle Scholar
  106. Rouse J, Jackson SP (2000) LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae. EMBO J 19:5801–5812PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ruiz S, Lopez-Contreras AJ, Gabut M, Marion RM, Gutierrez-Martinez P, Bua S, Ramirez O, Olalde I, Rodrigo-Perez S, Li H, Marques-Bonet T, Serrano M, Blasco MA, Batada NN, Fernandez-Capetillo O (2015) Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells. Nat Commun 6:8036PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ruiz S, Mayor-Ruiz C, Lafarga V, Murga M, Vega-Sandino M, Ortega S, Fernandez-Capetillo O (2016) A genome-wide CRISPR screen identifies CDC25A as a determinant of sensitivity to ATR inhibitors. Mol Cell 62(2):307–313PubMedPubMedCentralCrossRefGoogle Scholar
  109. Ruzankina Y, Schoppy DW, Asare A, Clark CE, Vonderheide RH, Brown EJ (2009) Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of ATR and Trp53. Nat Genet 41:1144–1149PubMedPubMedCentralCrossRefGoogle Scholar
  110. Sarmento LM, Povoa V, Nascimento R, Real G, Antunes I, Martins LR, Moita C, Alves PM, Abecasis M, Moita LF, Parkhouse RM, Meijerink JP, Barata JT (2015) CHK1 overexpression in T-cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress. Oncogene 34:2978–2990PubMedCrossRefPubMedCentralGoogle Scholar
  111. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145:529–542PubMedPubMedCentralCrossRefGoogle Scholar
  112. Schlacher K, Wu H, Jasin M (2012) A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22:106–116PubMedPubMedCentralCrossRefGoogle Scholar
  113. Schoppy DW, Ragland RL, Gilad O, Shastri N, Peters AA, Murga M, Fernandez-Capetillo O, Diehl JA, Brown EJ (2012) Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR. J Clin Invest 122:241–252PubMedCrossRefPubMedCentralGoogle Scholar
  114. Schulze J, Lopez-Contreras AJ, Uluckan O, Grana-Castro O, Fernandez-Capetillo O, Wagner EF (2014) Fos-dependent induction of Chk1 protects osteoblasts from replication stress. Cell Cycle 13:1980–1986PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60:3504–3513PubMedPubMedCentralGoogle Scholar
  116. Shima N, Alcaraz A, Liachko I, Buske TR, Andrews CA, Munroe RJ, Hartford SA, Tye BK, Schimenti JC (2007) A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat Genet 39:93–98PubMedCrossRefPubMedCentralGoogle Scholar
  117. Sibanda BL, Chirgadze DY, Blundell TL (2010) Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature 463:118–121PubMedCrossRefPubMedCentralGoogle Scholar
  118. Smits VA, Gillespie DA (2015) DNA damage control: regulation and functions of checkpoint kinase 1. FEBS J 282:3681–3692PubMedCrossRefPubMedCentralGoogle Scholar
  119. Smits VA, Reaper PM, Jackson SP (2006) Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response. Curr Biol 16:150–159PubMedCrossRefPubMedCentralGoogle Scholar
  120. Specks J, Lecona E, Lopez-Contreras AJ, Fernandez-Capetillo O (2015) A single conserved residue mediates binding of the ribonucleotide reductase catalytic subunit RRM1 to RRM2 and is essential for mouse development. Mol Cell Biol 35:2910–2917PubMedPubMedCentralCrossRefGoogle Scholar
  121. St Onge RP, Besley BD, Pelley JL, Davey S (2003) A role for the phosphorylation of hRad9 in checkpoint signaling. J Biol Chem 278:26620–26628PubMedCrossRefPubMedCentralGoogle Scholar
  122. Sun Y, Xu Y, Roy K, Price BD (2007) DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol Cell Biol 27:8502–8509PubMedPubMedCentralCrossRefGoogle Scholar
  123. Syljuasen RG, Sorensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, Helleday T, Sehested M, Lukas J, Bartek J (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25:3553–3562PubMedPubMedCentralCrossRefGoogle Scholar
  124. Takai H, Tominaga K, Motoyama N, Minamishima YA, Nagahama H, Tsukiyama T, Ikeda K, Nakayama K, Nakanishi M, Nakayama K (2000) Aberrant cell cycle checkpoint function and early embryonic death in Chk1(−/−) mice. Genes Dev 14:1439–1447PubMedPubMedCentralGoogle Scholar
  125. Tanaka A, Weinel S, Nagy N, O’Driscoll M, Lai-Cheong JE, Kulp-Shorten CL, Knable A, Carpenter G, Fisher SA, Hiragun M, Yanase Y, Hide M, Callen J, Mcgrath JA (2012) Germline mutation in ATR in autosomal- dominant oropharyngeal cancer syndrome. Am J Hum Genet 90:511–517PubMedPubMedCentralCrossRefGoogle Scholar
  126. Toledo LI, Murga M, Zur R, Soria R, Rodriguez A, Martinez S, Oyarzabal J, Pastor J, Bischoff JR, Fernandez-Capetillo O (2011) A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol 18:721–727PubMedPubMedCentralCrossRefGoogle Scholar
  127. Toledo LI, Altmeyer M, Rask MB, Lukas C, Larsen DH, Povlsen LK, Bekker-Jensen S, Mailand N, Bartek J, Lukas J (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155:1088–1103PubMedCrossRefPubMedCentralGoogle Scholar
  128. Verlinden L, Vanden Bempt I, Eelen G, Drijkoningen M, Verlinden I, Marchal K, de Wolf-Peeters C, Christiaens MR, Michiels L, Bouillon R, Verstuyf A (2007) The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor /progesterone receptor /HER-2 breast carcinomas. Cancer Res 67:6574–6581PubMedCrossRefPubMedCentralGoogle Scholar
  129. Walker EH, Perisic O, Ried C, Stephens L, Williams RL (1999) Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402:313–320PubMedCrossRefPubMedCentralGoogle Scholar
  130. Wardlaw CP, Carr AM, Oliver AW (2014) TopBP1: A BRCT-scaffold protein functioning in multiple cellular pathways. DNA Repair (Amst) 22:165–174CrossRefGoogle Scholar
  131. Weinert TA, Kiser GL, Hartwell LH (1994) Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8:652–665PubMedCrossRefPubMedCentralGoogle Scholar
  132. Wu CS, Zou L (2016) The SUMO (small ubiquitin-like modifier) ligase PIAS3 primes ATR for checkpoint activation. J Biol Chem 291:279–290PubMedCrossRefPubMedCentralGoogle Scholar
  133. Wu CS, Ouyang J, Mori E, Nguyen HD, Marechal A, Hallet A, Chen DJ, Zou L (2014) SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway. Genes Dev 28:1472–1484PubMedPubMedCentralCrossRefGoogle Scholar
  134. Xiao Z, Chang JG, Hendriks IA, Sigurethsson JO, Olsen JV, Vertegaal AC (2015) System-wide analysis of SUMOylation dynamics in response to replication stress reveals novel small ubiquitin-like modified target proteins and acceptor lysines relevant for genome stability. Mol Cell Proteomics 14:1419–1434PubMedPubMedCentralCrossRefGoogle Scholar
  135. Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP (2013) mTOR kinase structure, mechanism and regulation. Nature 497:217–223PubMedPubMedCentralCrossRefGoogle Scholar
  136. Yoo HY, Shevchenko A, Shevchenko A, Dunphy WG (2004) Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. J Biol Chem 279:53353–53364PubMedCrossRefPubMedCentralGoogle Scholar
  137. Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2009) The Mre11-Rad50-Nbs1 complex mediates activation of TopBP1 by ATM. Mol Biol Cell 20:2351–2360PubMedPubMedCentralCrossRefGoogle Scholar
  138. Yuan J, Ghosal G, Chen J (2009) The annealing helicase HARP protects stalled replication forks. Genes Dev 23:2394–2399PubMedPubMedCentralCrossRefGoogle Scholar
  139. Yuan J, Luo K, Deng M, Li Y, Yin P, Gao B, Fang Y, Wu P, Liu T, Lou Z (2014) HERC2-USP20 axis regulates DNA damage checkpoint through Claspin. Nucleic Acids Res 42:13110–13121PubMedPubMedCentralCrossRefGoogle Scholar
  140. Zhang Z, Yang K, Chen CC, Feser J, Huang M (2007) Role of the C terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1. Proc Natl Acad Sci U S A 104:2217–2222PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zhang YW, Jones TL, Martin SE, Caplen NJ, Pommier Y (2009) Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response. J Biol Chem 284:18085–18095PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zhang H, Head PE, Daddacha W, Park SH, Li X, Pan Y, Madden MZ, Duong DM, Xie M, Yu B, Warren MD, Liu EA, Dhere VR, Li C, Pradilla I, Torres MA, Wang Y, Dynan WS, Doetsch PW, Deng X, Seyfried NT, Gius D, Yu DS (2016) ATRIP deacetylation by SIRT2 drives ATR checkpoint activation by promoting binding to RPA-ssDNA. Cell Rep 14:1435–1447PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zhao X, Muller EG, Rothstein R (1998) A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2:329–340PubMedCrossRefPubMedCentralGoogle Scholar
  144. Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R (2001) The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J 20:3544–3553PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zhu M, Zhao H, Liao J, Xu X (2014) HERC2/USP20 coordinates CHK1 activation by modulating CLASPIN stability. Nucleic Acids Res 42:13074–13081PubMedPubMedCentralCrossRefGoogle Scholar
  146. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Genomic Instability Group, Spanish National Cancer Research Centre (CNIO)MadridSpain
  2. 2.Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden

Personalised recommendations