Development and Characterization of Photoresponsive Polymers

  • Florica Adriana Jerca
  • Valentin Victor JercaEmail author
  • Izabela-Cristina StancuEmail author
Part of the Micro- and Opto-Electronic Materials, Structures, and Systems book series (MOEM)


Polymeric materials that respond to light stimulus represent an important research area in the field of biomaterials. Light-responsive biomaterials have received significant attention due to their ability to provide spatially and temporally control and their potential to be less invasive. In this book chapter, we highlight the exciting progress realized in the biomedical field in recent years on photoresponsive polymeric systems. More precisely, we discuss the rational design of photoactive compounds, the role they have in the photoresponsive systems, the underlying principles behind photoresponsive behavior, and the subsequent applications in the biomaterial field. We also present the progress made in the field of photopharmacology, photoregulated drug delivery, and bioimaging, emphasizing the advantages on the basis of different architectures such as micelles, hydrogels, nanoparticles, and photoresponsive supramolecular assemblies. Finally, analytical techniques used to characterize the photoresponsive materials are expound.


Photoresponsive polymers Photochromic Azobenzenes Photoactive compounds Drug delivery Hydrogels Bioimaging 


  1. 1.
    P. Schattling, F.D. Jochum, P. Theato, Multi-stimuli responsive polymers—the all-in-one talents. Polym. Chem. 5, 25–36 (2014)CrossRefGoogle Scholar
  2. 2.
    R. Langer, D.A. Tirrell, Designing materials for biology and medicine. Nature 428, 487–492 (2004)CrossRefGoogle Scholar
  3. 3.
    M.C. Stuart, W.T.S. Huck, J. Genzer, et al., Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010)CrossRefGoogle Scholar
  4. 4.
    Y. Zhao, Light-responsive block copolymer micelles. Macromolecules 45, 3647–3657 (2012)CrossRefGoogle Scholar
  5. 5.
    J.-M. Schumers, C.-A. Fustin, J.-F. Gohy, Light-responsive block copolymers. Macromol. Rapid Commun. 31, 1588–1607 (2010)CrossRefGoogle Scholar
  6. 6.
    J.S. Katz, J.A. Burdick, Light-responsive biomaterials: development and applications. Macromol. Biosci. 10, 339–348 (2010)CrossRefGoogle Scholar
  7. 7.
    A. Goulet-Hanssens, C.J. Barrett, Photo-control of biological systems with azobenzene polymers. J. Polym. Sci. A Polym. Chem. 51, 3058–3070 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Ercole, T.P. Davis, R.A. Evans, Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym. Chem. 1, 37–54 (2010)CrossRefGoogle Scholar
  9. 9.
    T. Ikeda, Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 13, 2037–2057 (2003)CrossRefGoogle Scholar
  10. 10.
    M.C. Spiridon, K. Iliopoulos, F.A. Jerca, et al., Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage. Dyes Pigments 114, 24–32 (2015)CrossRefGoogle Scholar
  11. 11.
    J.A. Delaire, K. Nakatani, Linear and nonlinear optical properties of photochromic molecules and materials. Chem. Rev. 100, 1817–1845 (2000)CrossRefGoogle Scholar
  12. 12.
    F.D. Jochum, P. Theato, Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 42, 7468–7483 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Tian, Z. Tang, X. Zhuang, et al., Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog. Polym. Sci. 37, 237–280 (2012)CrossRefGoogle Scholar
  14. 14.
    G. Pasparakis, T. Manouras, P. Argitis, et al., Photodegradable polymers for biotechnological applications. Macromol. Rapid Commun. 33, 183–198 (2012)CrossRefGoogle Scholar
  15. 15.
    B.H. Cumpston, S.P. Ananthavel, S. Barlow, et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999)CrossRefGoogle Scholar
  16. 16.
    H.Y. Jiang, S. Kelch, A. Lendlein, Polymers move in response to light. Adv. Mater. 18, 1471–1475 (2006)CrossRefGoogle Scholar
  17. 17.
    A. Lendlein, H.Y. Jiang, O. Junger, et al., Light-induced shape-memory polymers. Nature 434, 879–882 (2005)CrossRefGoogle Scholar
  18. 18.
    T. Ikeda, M. Nakano, Y.L. Yu, et al., Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv. Mater. 15, 201 (2003)CrossRefGoogle Scholar
  19. 19.
    Y.-L. Zhao, J.F. Stoddart, Azobenzene-based light-responsive hydrogel system. Langmuir 25, 8442–8446 (2009)CrossRefGoogle Scholar
  20. 20.
    K. Han, W. Su, M. Zhong, et al., Reversible photocontrolled swelling-shrinking behavior of micron vesicles self-assembled from azopyridine-containing diblock copolymer. Macromol. Rapid Commun. 29, 1866–1870 (2008)CrossRefGoogle Scholar
  21. 21.
    S. Xie, A. Natansohn, P. Rochon, Recent developments in aromatic azo polymers research. Chem. Mater. 5, 403–411 (1993)CrossRefGoogle Scholar
  22. 22.
    T.M. Geue, A.G. Saphiannikova, O. Henneberg, et al., Formation mechanism and dynamics in polymer surface gratings. Phys. Rev. E 65 (2002)Google Scholar
  23. 23.
    T. Ubukata, T. Seki, K. Ichimura, Surface relief gratings in host-guest supramolecular materials. Adv. Mater. 12, 1675 (2000)CrossRefGoogle Scholar
  24. 24.
    V. Shibaev, A. Bobrovsky, N. Boiko, Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties. Prog. Polym. Sci. 28, 729–836 (2003)CrossRefGoogle Scholar
  25. 25.
    S. Kurihara, T. Ikeda, S. Tazuke, et al., Isothermal phase-transition of liquid-crystals induced by photoisomerization of doped spiropyrans. J. Chem. Soc.-Faraday Trans. 87, 3251–3254 (1991)CrossRefGoogle Scholar
  26. 26.
    A.S. Angeloni, D. Caretti, C. Carlini, et al., Photochromic liquid-crystalline polymers main chain and side-chain polymers containing azobenzene mesogens. Liq. Cryst. 4, 513–527 (1989)CrossRefGoogle Scholar
  27. 27.
    Z. Yue, I. Tomiki, Smart light-responsive materials: azobenzene-containing polymers and liquid crystals (John Wiley & Sons, Inc., Hoboken, NJ, 2009)Google Scholar
  28. 28.
    T. Seki, M. Sakuragi, Y. Kawanishi, et al., Modulated photoregulation of liquid-crystal alignment by azobenzene Langmuir-Blodgett layers—reversible alignment changes of liquid-crystals induced by photochromic molecular films 0.11. Thin Solid Films 210, 836–838 (1992)CrossRefGoogle Scholar
  29. 29.
    A. Natansohn, P. Rochon, J. Gosselin, et al., Azo polymers for reversible optical storage 0.1. poly 4′- 2-(acryloyloxy)ethyl ethylamino-4-nitroazobenzene. Macromolecules 25, 2268–2273 (1992)CrossRefGoogle Scholar
  30. 30.
    S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Rev. 100, 1777–1788 (2000)CrossRefGoogle Scholar
  31. 31.
    F.M. Andreopoulos, I. Persaud, Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Biomaterials 27, 2468–2476 (2006)CrossRefGoogle Scholar
  32. 32.
    J. Edahiro, K. Sumaru, Y. Tada, et al., In situ control of cell adhesion using photoresponsive culture surface. Biomacromolecules 6, 970–974 (2005)CrossRefGoogle Scholar
  33. 33.
    A. Higuchi, A. Hamamura, Y. Shindo, et al., Photon-modulated changes of cell attachments on poly(spiropyran-co-methyl methacrylate) membranes. Biomacromolecules 5, 1770–1774 (2004)CrossRefGoogle Scholar
  34. 34.
    C. Zhu, C. Ninh, C.J. Bettinger, Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering. Biomacromolecules 15, 3474–3494 (2014)CrossRefGoogle Scholar
  35. 35.
    I. Tomatsu, K. Peng, A. Kros, Photoresponsive hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 63, 1257–1266 (2011)CrossRefGoogle Scholar
  36. 36.
    H. Priya James, R. John, A. Alex, et al., Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm. Sin. B 4, 120–127 (2014)CrossRefGoogle Scholar
  37. 37.
    R. Cheng, F. Meng, C. Deng, et al., Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34, 3647–3657 (2013)CrossRefGoogle Scholar
  38. 38.
    A.K. Bajpai, S.K. Shukla, S. Bhanu, et al., Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 33, 1088–1118 (2008)CrossRefGoogle Scholar
  39. 39.
    M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)CrossRefGoogle Scholar
  40. 40.
    L. Zhai, Stimuli-responsive polymer films. Chem. Soc. Rev. 42, 7148–7160 (2013)CrossRefGoogle Scholar
  41. 41.
    M. Martina, D.W. Hutmacher, Biodegradable polymers applied in tissue engineering research: a review. Polym. Int. 56, 145–157 (2007)CrossRefGoogle Scholar
  42. 42.
    E. Fleige, M.A. Quadir, R. Haag, Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliv. Rev. 64, 866–884 (2012)CrossRefGoogle Scholar
  43. 43.
    H. Nishioka, X. Liang, T. Kato, et al., A photon-fueled DNA nanodevice that contains two different photoswitches. Angew. Chem. Int. Ed. 51, 1165–1168 (2012)CrossRefGoogle Scholar
  44. 44.
    C. Zhu, C.J. Bettinger, Light-induced remodeling of physically crosslinked hydrogels using near-IR wavelengths. J. Mater. Chem. B 2, 1613–1618 (2014)CrossRefGoogle Scholar
  45. 45.
    A. Serafim, C. Tucureanu, D.G. Petre, et al., One-pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design. New J. Chem. 38, 3112–3126 (2014)CrossRefGoogle Scholar
  46. 46.
    D.R. Griffin, A.M. Kasko, Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc. 134, 13103–13107 (2012)CrossRefGoogle Scholar
  47. 47.
    G. Liu, W. Liu, C.-M. Dong, UV- and NIR-responsive polymeric nanomedicines for on-demand drug delivery. Polym. Chem. 4, 3431–3443 (2013)CrossRefGoogle Scholar
  48. 48.
    D. Han, X. Tong, Y. Zhao, Fast photodegradable block copolymer micelles for burst release. Macromolecules 44, 437–439 (2011)CrossRefGoogle Scholar
  49. 49.
    Q. Jin, G. Liu, J. Ji, Micelles and reverse micelles with a photo and thermo double-responsive block copolymer. J. Polym. Sci. Part A: Polym. Chem. 48, 2855–2861 (2010)CrossRefGoogle Scholar
  50. 50.
    J. Jiang, Q. Shu, X. Chen, et al., Photoinduced morphology switching of polymer nanoaggregates in aqueous solution. Langmuir 26, 14247–14254 (2010)CrossRefGoogle Scholar
  51. 51.
    E. Cabane, V. Malinova, W. Meier, Synthesis of photocleavable amphiphilic block copolymers: toward the design of photosensitive nanocarriers. Macromol. Chem. Phys. 211, 1847–1856 (2010)CrossRefGoogle Scholar
  52. 52.
    Y. Zhao, Photocontrollable block copolymer micelles: what can we control? J. Mater. Chem. 19, 4887–4895 (2009)CrossRefGoogle Scholar
  53. 53.
    M.W. Urban, Stratification, stimuli-responsiveness, self-healing, and signaling in polymer networks. Prog. Polym. Sci. 34, 679–687 (2009)CrossRefGoogle Scholar
  54. 54.
    Y. Hirshberg, Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model. J. Am. Chem. Soc. 78, 2304–2312 (1956)CrossRefGoogle Scholar
  55. 55.
    E. Kim, Photorefractive effects in organic photochromic materials, in Photorefractive materials and their applications 2, ed. by W. T. Rhodes, (Springer Science+Business Media, LLC, New York, 2007), p. 607Google Scholar
  56. 56.
    F.A. Jerca, V.V. Jerca, D.F. Anghel, et al., Novel aspects regarding the photochemistry of azo-derivatives substituted with strong acceptor groups. J. Phys. Chem. C 119, 10538–10549 (2015)CrossRefGoogle Scholar
  57. 57.
    Z. Mahimwalla, K.G. Yager, J.-I. Mamiya, et al., Azobenzene photomechanics: prospects and potential applications. Polym. Bull. 69, 967–1006 (2012)CrossRefGoogle Scholar
  58. 58.
    A.A. Beharry, G.A. Woolley, Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 40, 4422–4437 (2011)CrossRefGoogle Scholar
  59. 59.
    A.A. Beharry, L. Wong, V. Tropepe, et al., Fluorescence imaging of azobenzene photoswitching in vivo. Angew. Chem. Int. Ed. 50, 1325–1327 (2011)CrossRefGoogle Scholar
  60. 60.
    A.A. Beharry, O. Sadovski, G.A. Woolley, Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 133, 19684–19687 (2011)CrossRefGoogle Scholar
  61. 61.
    L. Florea, D. Diamond, F. Benito-Lopez, Photo-responsive polymeric structures based on spiropyran. Macromol. Mater. Eng. 297, 1148–1159 (2012)CrossRefGoogle Scholar
  62. 62.
    G. Such, R.A. Evans, L.H. Yee, et al., Factors influencing photochromism of spiro-compounds within polymeric matrices. J. Macromol. Sci.: Polym. Rev. C43, 547–579 (2003)CrossRefGoogle Scholar
  63. 63.
    M.K. Maurer, I.K. Lednev, S.A. Asher, Photoswitchable spirobenzopyran-based photochemically controlled photonic crystals. Adv. Funct. Mater. 15, 1401–1406 (2005)CrossRefGoogle Scholar
  64. 64.
    G.K. Such, R.A. Evans, T.P. Davis, Rapid photochromic switching in a rigid polymer matrix using living radical polymerization. Macromolecules 39, 1391–1396 (2006)CrossRefGoogle Scholar
  65. 65.
    G.K. Such, R.A. Evans, T.P. Davis, The use of block copolymers to systematically modify photochromic behavior. Macromolecules 39, 9562–9570 (2006)CrossRefGoogle Scholar
  66. 66.
    G. Berkovic, V. Krongauz, V. Weiss, Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 100, 1741–1753 (2000)CrossRefGoogle Scholar
  67. 67.
    S.Z. Janicki, G.B. Schuster, A liquid-crystal optooptical switch—nondestructive information-retrieval based on a photochromic fulgide as trigger. J. Am. Chem. Soc. 117, 8524–8527 (1995)CrossRefGoogle Scholar
  68. 68.
    W. Ji, N. Li, D. Chen, et al., Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. J. Mater. Chem. B 1, 5942–5949 (2013)CrossRefGoogle Scholar
  69. 69.
    N. Fomina, C.L. Mcfearin, M. Sermsakdi, et al., Low power, biologically benign NIR light triggers polymer disassembly. Macromolecules 44, 8590–8597 (2011)CrossRefGoogle Scholar
  70. 70.
    Q. Jin, X. Liu, G. Liu, et al., Fabrication of core or shell reversibly photo cross-linked micelles and nanogels from double responsive water-soluble block copolymers. Polymer 51, 1311–1319 (2010)CrossRefGoogle Scholar
  71. 71.
    M. Nagata, Y. Yamamoto, Photoreversible poly(ethylene glycol)s with pendent coumarin group and their hydrogels. React. Funct. Polym. 68, 915–921 (2008)CrossRefGoogle Scholar
  72. 72.
    S.R. Trenor, A.R. Shultz, B.J. Love, et al., Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chem. Rev. 104, 3059–3077 (2004)CrossRefGoogle Scholar
  73. 73.
    B.G. Lake, Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem. Toxicol. 37, 423–453 (1999)CrossRefGoogle Scholar
  74. 74.
    C. Zhu, C.J. Bettinger, Light-induced disintegration of robust physically cross-linked polymer networks. Macromol. Rapid Commun. 34, 1446–1451 (2013)CrossRefGoogle Scholar
  75. 75.
    H. Zhao, E.S. Sterner, E.B. Coughlin, et al., o-Nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules 45, 1723–1736 (2012)CrossRefGoogle Scholar
  76. 76.
    Thomas SW, Iii (2012) New applications of photolabile nitrobenzyl groups in polymers. Macromol. Chem. Phys. 213:2443–2449Google Scholar
  77. 77.
    Gumbley P, Koylu D, Thomas SW, Iii (2011) Photoresponsive polymers containing nitrobenzyl esters via ring-opening metathesis polymerization. Macromolecules 44:7956–7961Google Scholar
  78. 78.
    O. Bertrand, J.-M. Schumers, C. Kuppan, et al., Photo-induced micellization of block copolymers bearing 4,5-dimethoxy-2-nitrobenzyl side groups. Soft Matter 7, 6891–6896 (2011)CrossRefGoogle Scholar
  79. 79.
    I. Aujard, C. Benbrahim, M. Gouget, et al., o-Nitrobenzyl photolabile protecting groups with red-shifted absorption: syntheses and uncaging cross-sections for one- and two-photon excitation. Chem. A Eur. J. 12, 6865–6879 (2006)CrossRefGoogle Scholar
  80. 80.
    S. Wang, M.-S. Choi, S.-H. Kim, Bistable photoswitching in poly(N-isopropylacrylamide) with spironaphthoxazine hydrogel for optical data storage. J. Photochem. Photobiol. A: Chem. 198, 150–155 (2008)CrossRefGoogle Scholar
  81. 81.
    L. Zhu, W. Wu, M.-Q. Zhu, et al., Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging. J. Am. Chem. Soc. 129, 3524 (2007)CrossRefGoogle Scholar
  82. 82.
    Y. Yokoyama, Fulgides for memories and switches. Chem. Rev. 100, 1717–1740 (2000)CrossRefGoogle Scholar
  83. 83.
    M. Irie, T. Fukaminato, K. Matsuda, et al., Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014)CrossRefGoogle Scholar
  84. 84.
    F.M. Andreopoulos, C.R. Deible, M.T. Stauffer, et al., Photoscissable hydrogel synthesis via rapid photopolymerization of novel PEG-based polymers in the absence of photoinitiators. J. Am. Chem. Soc. 118, 6235–6240 (1996)CrossRefGoogle Scholar
  85. 85.
    Y.J. Zheng, F.M. Andreopoulos, M. Micic, et al., A novel photoscissile poly(ethylene glycol)-based hydrogel. Adv. Funct. Mater. 11, 37–40 (2001)CrossRefGoogle Scholar
  86. 86.
    Y.J. Zheng, M. Mieie, S.V. Mello, et al., PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35, 5228–5234 (2002)CrossRefGoogle Scholar
  87. 87.
    Q. Jin, G. Liu, J. Li, Preparation of reversibly photo-cross-linked nanogels from pH-responsive block copolymers and use as nanoreactors for the synthesis of gold nanoparticles. Eur. Polym. J. 46, 2120–2128 (2010)CrossRefGoogle Scholar
  88. 88.
    D.Y. Wu, S. Meure, D. Solomon, Self-healing polymeric materials: a review of recent developments. Prog. Polym. Sci. 33, 479–522 (2008)CrossRefGoogle Scholar
  89. 89.
    S. Banerjee, R. Tripathy, D. Cozzens, et al., Photoinduced smart, self-healing polymer sealant for photovoltaics. ACS Appl. Mater. Interfaces 7, 2064–2072 (2015)CrossRefGoogle Scholar
  90. 90.
    Snyder EA, Tong TH (2005) Towards novel light-activated shape memory polymer: thermornechanical properties of photo-responsive polymers. In: Ozkan CS, LaVan DA, McNie M, Prasad S editors. Micro- and nanosystems-materials and devices. p 353–358Google Scholar
  91. 91.
    S. Gug, S. Charon, A. Specht, et al., Photolabile glutamate protecting group with high one- and two-photon uncaging efficiencies. ChemBiochem 9, 1303–1307 (2008)CrossRefGoogle Scholar
  92. 92.
    H. Yu, J. Li, D. Wu, et al., Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 39, 464–473 (2010)CrossRefGoogle Scholar
  93. 93.
    H. Xu, M.M. Reynolds, K.E. Cook, et al., 2-Hydroxy-5-nitrobenzyl as a Diazeniumdiolate Protecting Group: application in NO-releasing polymers with enhanced biocompatibility. Org. Lett. 10, 4593–4596 (2008)CrossRefGoogle Scholar
  94. 94.
    P. Anilkumar, E. Gravel, I. Theodorou, et al., Nanometric micelles with photo-triggered cytotoxicity. Adv. Funct. Mater. 24, 5246–5252 (2014)CrossRefGoogle Scholar
  95. 95.
    D.Y. Wong, D.R. Griffin, J. Reed, et al., Photodegradable hydrogels to generate positive and negative features over multiple length scales. Macromolecules 43, 2824–2831 (2010)CrossRefGoogle Scholar
  96. 96.
    J.-M. Schumers, O. Bertrand, C.-A. Fustin, et al., Synthesis and self-assembly of diblock copolymers bearing 2-nitrobenzyl photocleavable side groups. J. Polym. Sci. Part A: Polym. Chem. 50, 599–608 (2012)CrossRefGoogle Scholar
  97. 97.
    D. Han, X. Tong, Y. Zhao, Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir 28, 2327–2331 (2012)CrossRefGoogle Scholar
  98. 98.
    C.D.G. Lux, C.L. Mcfearin, S. Joshi-Barr, et al., Single UV or near IR triggering event leads to polymer degradation into small molecules. ACS Macro Lett. 1, 922–926 (2012)CrossRefGoogle Scholar
  99. 99.
    B. Yan, J.-C. Boyer, N.R. Branda, et al., Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J. Am. Chem. Soc. 133, 19714–19717 (2011)CrossRefGoogle Scholar
  100. 100.
    Y.R. Zhao, Q. Zheng, K. Dakin, et al., New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications. J. Am. Chem. Soc. 126, 4653–4663 (2004)CrossRefGoogle Scholar
  101. 101.
    A.Z. Suzuki, T. Watanabe, M. Kawamoto, et al., Coumarin-4-ylmethoxycarbonyls as phototriggers for alcohols and phenols. Org. Lett. 5, 4867–4870 (2003)CrossRefGoogle Scholar
  102. 102.
    V.R. Shembekar, Y.L. Chen, B.K. Carpenter, et al., A protecting group for carboxylic acids that can be photolyzed by visible light. Biochemistry 44, 7107–7114 (2005)CrossRefGoogle Scholar
  103. 103.
    R.S. Givens, M. Rubina, J. Wirz, Applications of p-hydroxyphenacyl (pHP) and coumarin-4-ylmethyl photoremovable protecting groups. Photochem. Photobiol. Sci. 11, 472–488 (2012)CrossRefGoogle Scholar
  104. 104.
    Y.V. Il’ichev, M.A. Schworer, J. Wirz, Photochemical reaction mechanisms of 2-nitrobenzyl compounds: methyl ethers and caged ATP. J. Am. Chem. Soc. 126, 4581–4595 (2004)CrossRefGoogle Scholar
  105. 105.
    Y. Jiang, P. Wan, H. Xu, et al., Facile reversible UV-controlled and fast transition from emulsion to gel by using a photoresponsive polymer with a Malachite Green Group. Langmuir 25, 10,134–10,138 (2009)CrossRefGoogle Scholar
  106. 106.
    Z. Sekkat, Photoreactive organic thin films (Elsevier Science (USA), San Diego, California, 2002)Google Scholar
  107. 107.
    S.K. Yesodha, C.K. Sadashiva Pillai, N. Tsutsumi, Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Prog. Polym. Sci. 29, 45–74 (2004)CrossRefGoogle Scholar
  108. 108.
    H. Rau, Photoisomerization of azobenzenes, in Photochemistry and photophysics, ed. by J. F. Rabek, (CRC Press, Inc., Boca Raton, FL, 1990)Google Scholar
  109. 109.
    A. Goulet-Hanssens, K.L.W. Sun, T.E. Kennedy, et al., Photoreversible surfaces to regulate cell adhesion. Biomacromolecules 13, 2958–2963 (2012)CrossRefGoogle Scholar
  110. 110.
    V.V. Jerca, F.A. Nicolescu, R. Trusca, et al., Oxazoline-functional polymer particles graft with azo-dye. React. Funct. Polym. 71, 373–379 (2011)CrossRefGoogle Scholar
  111. 111.
    L. Brzozowski, E.H. Sargent, Azobenzenes for photonic network applications: third-order nonlinear optical properties. J. Mater. Sci. Mater. Electron. 12, 483–489 (2001)CrossRefGoogle Scholar
  112. 112.
    G.-A. Jaume, V. Dolores, Recent advances towards azobenzene-based light-driven real-time information-transmitting materials. Beilstein J. Org. Chem. 8, 1003–1017 (2012)CrossRefGoogle Scholar
  113. 113.
    V.V. Jerca, F.A. Jerca, I. Rau, et al., Advances in understanding the photoresponsive behavior of azobenzenes substituted with strong electron withdrawing groups. Opt. Mater. 48, 160–164 (2015)CrossRefGoogle Scholar
  114. 114.
    M.M. Lerch, M.J. Hansen, G.M. Van Dam, et al., Emerging targets in photopharmacology. Angew. Chem. Int. Ed. 55, 10978–10999 (2016)CrossRefGoogle Scholar
  115. 115.
    J. Bieth, S.M. Vratsanos, N.H. Wassermann, et al., Photoregulation of biological activity by photochromic reagents. Inactivators of acetylcholinesterase. Biochemistry 12, 3023–3027 (1973)CrossRefGoogle Scholar
  116. 116.
    I. Tochitsky, A. Polosukhina, V.E. Degtyar, et al., Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 81, 800–813 (2014)CrossRefGoogle Scholar
  117. 117.
    M.A. Kienzler, A. Reiner, E. Trautman, et al., A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J. Am. Chem. Soc. 135, 17683–17686 (2013)CrossRefGoogle Scholar
  118. 118.
    P. Stawski, M. Sumser, D. Trauner, A photochromic agonist of AMPA receptors. Angew. Chem. Int. Ed. 51, 5748–5751 (2012)CrossRefGoogle Scholar
  119. 119.
    R.H. Kramer, D.L. Fortin, D. Trauner, New photochemical tools for controlling neuronal activity. Curr. Opin. Neurobiol. 19, 544–552 (2009)CrossRefGoogle Scholar
  120. 120.
    J.H. Harvey, D. Trauner, Regulating enzymatic activity with a photoswitchable affinity label. ChemBiochem 9, 191–193 (2008)CrossRefGoogle Scholar
  121. 121.
    D.L. Fortin, M.R. Banghart, T.W. Dunn, et al., Photochemical control of endogenous ion channels and cellular excitability. Nat. Methods 5, 331–338 (2008)CrossRefGoogle Scholar
  122. 122.
    J. Broichhagen, N.R. Johnston, Y. Von Ohlen, et al., Allosteric optical control of a class B G-protein-coupled receptor. Angew. Chem. Int. Ed. 55, 5865–5868 (2016)CrossRefGoogle Scholar
  123. 123.
    J. Broichhagen, J.A. Frank, N.R. Johnston, et al., A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function. Chem. Commun. 51, 6018–6021 (2015)CrossRefGoogle Scholar
  124. 124.
    M.J. Hansen, W.A. Velema, G. De Bruin, et al., Proteasome inhibitors with photocontrolled activity. ChemBioChem 15, 2053–2057 (2014)CrossRefGoogle Scholar
  125. 125.
    A.F. Kisselev, M. Groettrup, Subunit specific inhibitors of proteasomes and their potential for immunomodulation. Curr. Opin. Chem. Biol. 23, 16–22 (2014)CrossRefGoogle Scholar
  126. 126.
    M. Borowiak, W. Nahaboo, M. Reynders, et al., Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell 162, 403–411 (2015)CrossRefGoogle Scholar
  127. 127.
    A.J. Engdahl, E.A. Torres, S.E. Lock, et al., Synthesis, characterization, and bioactivity of the photoisomerizable tubulin polymerization inhibitor azo-combretastatin A4. Org. Lett. 17, 4546–4549 (2015)CrossRefGoogle Scholar
  128. 128.
    J.E. Sheldon, M.M. Dcona, C.E. Lyons, et al., Photoswitchable anticancer activity via trans-cis isomerization of a combretastatin A-4 analog. Org. Biomol. Chem. 14, 40–49 (2016)CrossRefGoogle Scholar
  129. 129.
    W.A. Velema, J.P. Van Der Berg, M.J. Hansen, et al., Optical control of antibacterial activity. Nat. Chem. 5, 924–928 (2013)CrossRefGoogle Scholar
  130. 130.
    S. Pittolo, X. Gómez-Santacana, K. Eckelt, et al., An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat. Chem. Biol. 10, 813–815 (2014)CrossRefGoogle Scholar
  131. 131.
    M. Stein, A. Breit, T. Fehrentz, et al., Optical control of TRPV1 channels. Angew. Chem. Int. Ed. 52, 9845–9848 (2013)CrossRefGoogle Scholar
  132. 132.
    H. Nishioka, X. Liang, H. Asanuma, Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form. Chem. A Eur. J. 16, 2054–2062 (2010)CrossRefGoogle Scholar
  133. 133.
    H. Ito, X. Liang, H. Nishioka, et al., Construction of photoresponsive RNA for photoswitching RNA hybridization. Org. Biomol. Chem. 8, 5519–5524 (2010)CrossRefGoogle Scholar
  134. 134.
    H. Asanuma, X. Liang, H. Nishioka, et al., Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat. Protoc. 2, 203–212 (2007)CrossRefGoogle Scholar
  135. 135.
    R.P. Sinha, D.P. Hader, UV-induced DNA damage and repair: a review. Photochem. Photobiol. Sci. 1, 225–236 (2002)CrossRefGoogle Scholar
  136. 136.
    H. Asanuma, T. Ito, T. Yoshida, et al., Photoregulation of the formation and dissociation of a DNA duplex by using the cis-trans isomerization of azobenzene. Angew. Chem. Int. Ed. 38, 2393–2395 (1999)CrossRefGoogle Scholar
  137. 137.
    H. Kang, H. Liu, X. Zhang, et al., Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir 27, 399–408 (2011)CrossRefGoogle Scholar
  138. 138.
    D. Han, J. Huang, Z. Zhu, et al., Molecular engineering of photoresponsive three-dimensional DNA nanostructures. Chem. Commun. 47, 4670–4672 (2011)CrossRefGoogle Scholar
  139. 139.
    R.H. Bisby, C. Mead, C.C. Morgan, Wavelength-programmed solute release from photosensitive liposomes. Biochem. Biophys. Res. Commun. 276, 169–173 (2000)CrossRefGoogle Scholar
  140. 140.
    M. Elsabahy, K.L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012)CrossRefGoogle Scholar
  141. 141.
    D. Seliktar, Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012)CrossRefGoogle Scholar
  142. 142.
    A.M. Kloxin, A.M. Kasko, C.N. Salinas, et al., Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009)CrossRefGoogle Scholar
  143. 143.
    K. Peng, I. Tomatsu, A. Kros, Light controlled protein release from a supramolecular hydrogel. Chem. Commun. 46, 4094–4096 (2010)CrossRefGoogle Scholar
  144. 144.
    D.J. Siegwart, J.K. Oh, K. Matyjaszewski, ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 37, 18–37 (2012)CrossRefGoogle Scholar
  145. 145.
    K. Matyjaszewski, J. Spanswick, Controlled/living radical polymerization. Mater. Today 8, 26–33 (2005)CrossRefGoogle Scholar
  146. 146.
    H.S. Bisht, A.K. Chatterjee, Living free-radical polymerization—a review. J. Macromol. Sci. Part C 41, 139–173 (2001)CrossRefGoogle Scholar
  147. 147.
    Y. Zhao, Rational design of light-controllable polymer micelles. Chem. Rec. 7, 286–294 (2007)CrossRefGoogle Scholar
  148. 148.
    O. Boissiere, D. Han, L. Tremblay, et al., Flower micelles of poly(N-isopropylacrylamide) with azobenzene moieties regularly inserted into the main chain. Soft Mater 7, 9410–9415 (2011)CrossRefGoogle Scholar
  149. 149.
    J.-H. Liu, Y.-H. Chiu, Behaviors of self-assembled diblock copolymer with pendant photosensitive azobenzene segments. J. Polym. Sci. Part A: Polym. Chem. 48, 1142–1148 (2010)CrossRefGoogle Scholar
  150. 150.
    Z. Feng, L. Lin, Z. Yan, et al., Dual responsive block copolymer micelles functionalized by NIPAM and azobenzene. Macromol. Rapid Commun. 31, 640–644 (2010)CrossRefGoogle Scholar
  151. 151.
    D. Wang, J. Liu, G. Ye, et al., Amphiphilic block copolymers bearing strong push-pull azo chromophores: synthesis, micelle formation and photoinduced shape deformation. Polymer 50, 418–427 (2009)CrossRefGoogle Scholar
  152. 152.
    X. Tang, L. Gao, X. Fan, et al., Self-assembly and photoresponsivity property of amphiphilic ABA triblock copolymers containing azobenzene moieties in dilute solution. Macromol. Chem. Phys. 210, 1556–1562 (2009)CrossRefGoogle Scholar
  153. 153.
    G. Wang, X. Tong, Y. Zhao, Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 37, 8911–8917 (2004)CrossRefGoogle Scholar
  154. 154.
    S. Son, E. Shin, B.-S. Kim, Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromolecules 15, 628–634 (2014)CrossRefGoogle Scholar
  155. 155.
    H.-Y. Lee, K.K. Diehn, K. Sun, et al., Reversible photorheological fluids based on spiropyran-doped reverse micelles. J. Am. Chem. Soc. 133, 8461–8463 (2011)CrossRefGoogle Scholar
  156. 156.
    H.-I. Lee, W. Wu, J.K. Oh, et al., Light-induced reversible formation of polymeric micelles. Angew. Chem. Int. Ed. 46, 2453–2457 (2007)CrossRefGoogle Scholar
  157. 157.
    V.K. Kotharangannagari, A. Sanchez-Ferrer, J. Ruokolainen, et al., Photoresponsive reversible aggregation and dissolution of rod-coil polypeptide diblock copolymers. Macromolecules 44, 4569–4573 (2011)CrossRefGoogle Scholar
  158. 158.
    S.-J. Lim, C.-J. Carling, C.C. Warford, et al., Multifunctional photo- and thermo-responsive copolymer nanoparticles. Dyes Pigments 89, 230–235 (2011)CrossRefGoogle Scholar
  159. 159.
    Z. Chen, Y. He, Y. Wang, et al., Amphiphilic diblock copolymer with dithienylethene pendants: synthesis and photo-modulated self-assembly. Macromol. Rapid Commun. 32, 977–982 (2011)CrossRefGoogle Scholar
  160. 160.
    G.-Y. Liu, C.-J. Chen, D.-D. Li, et al., Near-infrared light-sensitive micelles for enhanced intracellular drug delivery. J. Mater. Chem. 22, 16865–16871 (2012)CrossRefGoogle Scholar
  161. 161.
    C.-J. Chen, G.-Y. Liu, Y.-T. Shi, et al., Biocompatible micelles based on comb-like PEG derivates: formation, characterization, and photo-responsiveness. Macromol. Rapid Commun. 32, 1077–1081 (2011)CrossRefGoogle Scholar
  162. 162.
    K. Szczubialka, I. Moczek, S. Blaszkiewicz, et al., Photocrosslinkable smart terpolymers responding to pH, temperature, and ionic strength. J. Polym. Sci. Part A: Polym. Chem. 42, 3879–3886 (2004)CrossRefGoogle Scholar
  163. 163.
    J.F. Ding, G.J. Liu, Polystyrene block poly(2-cinnamoylethyl methacrylate) nanospheres with cross-linked shells. Macromolecules 31, 6554–6558 (1998)CrossRefGoogle Scholar
  164. 164.
    A. Guo, G.J. Liu, J. Tao, Star polymers and nanospheres from cross-linkable diblock copolymers. Macromolecules 29, 2487–2493 (1996)CrossRefGoogle Scholar
  165. 165.
    S.-I. Yusa, M. Sugahara, T. Endo, et al., Preparation and characterization of a pH-responsive nanogel based on a photo-cross-linked micelle formed from block copolymers with controlled structure. Langmuir 25, 5258–5265 (2009)CrossRefGoogle Scholar
  166. 166.
    J. He, X. Tong, Y. Zhao, Photoresponsive nanogels based on photocontrollable cross-links. Macromolecules 42, 4845–4852 (2009)CrossRefGoogle Scholar
  167. 167.
    J. He, L. Tremblay, S. Lacelle, et al., Preparation of polymer single chain nanoparticles using intramolecular photodimerization of coumarin. Soft Matter 7, 2380–2386 (2011)CrossRefGoogle Scholar
  168. 168.
    J. He, B. Yan, L. Tremblay, et al., Both core- and shell-cross-linked nanogels: photoinduced size change, intraparticle LCST, and interparticle UCST thermal behaviors. Langmuir 27, 436–444 (2011)CrossRefGoogle Scholar
  169. 169.
    J. Jiang, B. Qi, M. Lepage, et al., Polymer micelles stabilization on demand through reversible photo-cross-linking. Macromolecules 40, 790–792 (2007)CrossRefGoogle Scholar
  170. 170.
    G. Liu, C.-M. Dong, Photoresponsive poly(S-(o-nitrobenzyl)-L-cysteine)-b-PEO from a L-cysteine N-carboxyanhydride monomer: synthesis, self-assembly, and phototriggered drug release. Biomacromolecules 13, 1573–1583 (2012)CrossRefGoogle Scholar
  171. 171.
    J.Q. Jiang, X. Tong, D. Morris, et al., Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules 39, 4633–4640 (2006)CrossRefGoogle Scholar
  172. 172.
    J. Babin, M. Pelletier, M. Lepage, et al., A new two-photon-sensitive block copolymer nanocarrier. Angew. Chem. Int. Ed. 48, 3329–3332 (2009)CrossRefGoogle Scholar
  173. 173.
    C. Gong, K.-L. Wong, M.H.W. Lam, Photoresponsive molecularly imprinted hydrogels for the photoregulated release and uptake of pharmaceuticals in the aqueous media. Chem. Mater. 20, 1353–1358 (2008)CrossRefGoogle Scholar
  174. 174.
    C. Gomy, A.R. Schmitzer, Synthesis and photoresponsive properties of a molecularly imprinted polymer. Org. Lett. 9, 3865–3868 (2007)CrossRefGoogle Scholar
  175. 175.
    N. Minoura, K. Idei, A. Rachkov, et al., Preparation of azobenzene-containing polymer membranes that function in photoregulated molecular recognition. Macromolecules 37, 9571–9576 (2004)CrossRefGoogle Scholar
  176. 176.
    C. Gong, M.H.-W. Lam, H. Yu, The fabrication of a photoresponsive molecularly imprinted polymer for the photoregulated uptake and release of caffeine. Adv. Funct. Mater. 16, 1759–1767 (2006)CrossRefGoogle Scholar
  177. 177.
    Q. Tang, C. Gong, M.H.-W. Lam, et al., Photoregulated uptake and release of drug by an organic-inorganic hybrid sol-gel material. J. Sol-Gel Sci. Technol. 59, 495–504 (2011)CrossRefGoogle Scholar
  178. 178.
    K. Sumaru, K. Ohi, T. Takagi, et al., Photoresponsive properties of poly(N-isopropylacrylamide) hydrogel partly modified with spirobenzopyran. Langmuir 22, 4353–4356 (2006)CrossRefGoogle Scholar
  179. 179.
    E.U. Kulawardana, T. Kuruwita-Mudiyanselage, D.C. Neckers, Dual Responsive poly(N-isopropylacrylamide) hydrogels having spironaphthoxazines as pendant groups. J. Polym. Sci. Part A: Polym. Chem. 47, 3318–3325 (2009)CrossRefGoogle Scholar
  180. 180.
    E.S. Gil, S.M. Hudson, Stimuli-responsive polymers and their bioconjugates. Prog. Polym. Sci. 29, 1173–1222 (2004)CrossRefGoogle Scholar
  181. 181.
    F.M. Andreopoulos, E.J. Beckman, A.J. Russell, Photoswitchable PEG-CA hydrogels and factors that affect their photosensitivity. J. Polym. Sci. Part A: Polym. Chem. 38, 1466–1476 (2000)CrossRefGoogle Scholar
  182. 182.
    F.M. Andreopoulos, E.J. Beckman, A.J. Russell, Light-induced tailoring of PEG-hydrogel properties. Biomaterials 19, 1343–1352 (1998)CrossRefGoogle Scholar
  183. 183.
    D. Chen, H. Liu, T. Kobayashi, et al., Multiresponsive reversible gels based on a carboxylic azo polymer. J. Mater. Chem. 20, 3610–3614 (2010)CrossRefGoogle Scholar
  184. 184.
    J. Liu, J. Nie, Y. Zhao, et al., Preparation and properties of different photoresponsive hydrogels modulated with UV and visible light irradiation. J. Photochem. Photobiol. A Chem. 211, 20–25 (2010)CrossRefGoogle Scholar
  185. 185.
    S. Patnaik, A.K. Sharma, B.S. Garg, et al., Photoregulation of drug release in azo-dextran nanogels. Int. J. Pharm. 342, 184–193 (2007)CrossRefGoogle Scholar
  186. 186.
    B.V.K.J. Schmidt, M. Hetzer, H. Ritter, et al., Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog. Polym. Sci. 39, 235–249 (2014)CrossRefGoogle Scholar
  187. 187.
    K. Peng, C. Cui, I. Tomatsu, et al., Cyclodextrin/dextran based drug carriers for a controlled release of hydrophobic drugs in zebrafish embryos. Soft Matter 6, 3778–3783 (2010)CrossRefGoogle Scholar
  188. 188.
    W. Xiao, W.-H. Chen, J. Zhang, et al., Design of a photoswitchable hollow microcapsular drug delivery system by using a supramolecular drug-loading approach. J. Phys. Chem. B 115, 13796–13802 (2011)CrossRefGoogle Scholar
  189. 189.
    X. Hu, P.J. Zheng, X.Y. Zhao, et al., Preparation, characterization and novel photoregulated rheological properties of azobenzene functionalized cellulose derivatives and their at-CD complexes. Polymer 45, 6219–6225 (2004)CrossRefGoogle Scholar
  190. 190.
    T. Sakai, H. Murayama, S. Nagano, et al., Photoresponsive slide-ring gel. Adv. Mater. 19, 2023 (2007)CrossRefGoogle Scholar
  191. 191.
    Y. Takashima, T. Nakayama, M. Miyauchi, et al., Complex formation and gelation between copolymers containing pendant azobenzene groups and cyclodextrin polymers. Chem. Lett. 33, 890–891 (2004)CrossRefGoogle Scholar
  192. 192.
    S. Tamesue, Y. Takashima, H. Yamaguchi, et al., Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. Chem. Int. Ed. 49, 7461–7464 (2010)CrossRefGoogle Scholar
  193. 193.
    C.-J. Chen, G.-Y. Liu, X.-S. Liu, et al., Construction of photo-responsive micelles from azobenzene-modified hyperbranched polyphosphates and study of their reversible self-assembly and disassembly behaviours. New J. Chem. 36, 694–701 (2012)CrossRefGoogle Scholar
  194. 194.
    Q. Yan, Y. Xin, R. Zhou, et al., Light-controlled smart nanotubes based on the orthogonal assembly of two homopolymers. Chem. Commun. 47, 9594–9596 (2011)CrossRefGoogle Scholar
  195. 195.
    M.A. Hahn, A.K. Singh, P. Sharma, et al., Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal. Bioanal. Chem. 399, 3–27 (2011)CrossRefGoogle Scholar
  196. 196.
    M.J. Chen, M.Z. Yin, Design and development of fluorescent nanostructures for bioimaging. Prog. Polym. Sci. 39, 365–395 (2014)CrossRefGoogle Scholar
  197. 197.
    W. Liu, W.S. Zhang, X.Q. Yu, et al., Synthesis and biomedical applications of fluorescent nanogels. Polym. Chem. 7, 5749–5762 (2016)CrossRefGoogle Scholar
  198. 198.
    A.A. Beharry, L. Wong, V. Tropepe, et al., Fluorescence imaging of azobenzene photoswitching in vivo. Angew. Chem. 50, 1325–1327 (2011)CrossRefGoogle Scholar
  199. 199.
    A. Chevalier, W. Piao, K. Hanaoka, et al., Azobenzene-caged sulforhodamine dyes: a novel class of ‘turn-on’ reactive probes for hypoxic tumor cell imaging. Methods Appl. Fluoresc. 3 (2015)Google Scholar
  200. 200.
    S. Mao, R.K.P. Benninger, Y. Yan, et al., Optical lock-in detection of FRET using synthetic and genetically encoded optical switches. Biophys. J. 94, 4515–4524 (2008)CrossRefGoogle Scholar
  201. 201.
    S. Wan, Y. Zheng, J. Shen, et al., “On–off–on” switchable sensor: a fluorescent spiropyran responds to extreme pH conditions and its bioimaging applications. ACS Appl. Mater. Interfaces 6, 19515–19519 (2014)CrossRefGoogle Scholar
  202. 202.
    Q. Hu, Y.Q. Tan, M. Liu, et al., A new highly selective and sensitive fluorescent probe for Zn2+ and its application in cell-imaging. Dyes Pigments 107, 45–50 (2014)CrossRefGoogle Scholar
  203. 203.
    B. Sen, S.K. Sheet, R. Thounaojam, et al., A coumarin based Schiff base probe for selective fluorescence detection of Al3+ and its application in live cell imaging. Spectrochim. Acta A 173, 537–543 (2017)CrossRefGoogle Scholar
  204. 204.
    L. Huang, J. Cheng, K. Xie, et al., Cu2 + −selective fluorescent chemosensor based on coumarin and its application in bioimaging. Dalton Trans. 40, 10815–10817 (2011)CrossRefGoogle Scholar
  205. 205.
    O. Garcia-Beltran, B.K. Cassels, C. Perez, et al., Coumarin-based fluorescent probes for dual recognition of copper(II) and iron(III) ions and their application in bio-imaging. Sensors (Basel) 14, 1358–1371 (2014)CrossRefGoogle Scholar
  206. 206.
    Q. Sun, W.B. Zhang, J.H. Qian, A ratiometric fluorescence probe for selective detection of sulfite and its application in realistic samples. Talanta 162, 107–113 (2017)CrossRefGoogle Scholar
  207. 207.
    Y.T. Yang, B.Z. Bai, M. Jin, et al., Fluorescent imaging of Au3+ in living cells with two new high selective Au3+ probes. Biosens. Bioelectron. 86, 939–943 (2016)CrossRefGoogle Scholar
  208. 208.
    K.M. Xiong, F.J. Huo, C.X. Yin, et al., A off-on green fluorescent chemosensor for cyanide based on a hybrid coumarin-hemicyanine dye and its bioimaging. Sensors Actuat. B: Chem. 220, 822–828 (2015)CrossRefGoogle Scholar
  209. 209.
    Y. Zhou, Y.W. Yao, J.Y. Li, et al., Nitroxyl induced fluorescence enhancement via reduction of a copper(II) coumarin-ester complex: its application for bioimaging in vivo. Sensors Actuat. B: Chem. 174, 414–420 (2012)CrossRefGoogle Scholar
  210. 210.
    Y.C. Liao, P. Venkatesan, L.F. Wei, et al., A coumarin-based fluorescent probe for thiols and its application in cell imaging. Sensors Actuat. B: Chem. 232, 732–737 (2016)CrossRefGoogle Scholar
  211. 211.
    Y.T. Yang, F.J. Huo, C.X. Yin, et al., Thiol-chromene click chemistry: a coumarin-based derivative and its use as regenerable thiol probe and in bioimaging applications. Biosens. Bioelectron. 47, 300–306 (2013)CrossRefGoogle Scholar
  212. 212.
    C.Y. Chen, W. Liu, C. Xu, et al., A colorimetric and fluorescent probe for detecting intracellular GSH. Biosens. Bioelectron. 71, 68–74 (2015)CrossRefGoogle Scholar
  213. 213.
    W.M. Liu, B.J. Zhou, G.L. Niu, et al., Deep-red emissive crescent-shaped fluorescent dyes: substituent effect on live cell imaging. ACS Appl. Mater. Interfaces 7, 7421–7427 (2015)CrossRefGoogle Scholar
  214. 214.
    T.J. Chozinski, L.A. Gagnon, J.C. Vaughan, Twinkle, twinkle little star: Photoswitchable fluorophores for super-resolution imaging. FEBS Lett. 588, 3603–3612 (2014)CrossRefGoogle Scholar
  215. 215.
    H. Schill, S. Nizamov, F. Bottanelli, et al., 4-Trifluoromethyl-substituted coumarins with large stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy. Chem. A Eur. J. 19, 16556–16565 (2013)CrossRefGoogle Scholar
  216. 216.
    H. Zhang, C. Wang, T. Jiang, et al., Microtubule-targetable fluorescent probe: site-specific detection and super-resolution imaging of ultratrace tubulin in microtubules of living cancer cells. Anal. Chem. 87, 5216–5222 (2015)CrossRefGoogle Scholar
  217. 217.
    E. Deniz, M. Tomasulo, J. Cusido, et al., Photoactivatable fluorophores for super-resolution imaging based on oxazine auxochromes. J. Phys. Chem. C 116, 6058–6068 (2012)CrossRefGoogle Scholar
  218. 218.
    J. Qiao, L. Qi, Y. Shen, et al., Thermal responsive fluorescent block copolymer for intracellular temperature sensing. J. Mater. Chem. 22, 11543–11549 (2012)CrossRefGoogle Scholar
  219. 219.
    Y. Wang, C.-Y. Hong, C.-Y. Pan, Spiropyran-based hyperbranched star copolymer: synthesis, phototropy, FRET, and bioapplication. Biomacromolecules 13, 2585–2593 (2012)CrossRefGoogle Scholar
  220. 220.
    V.V. Jerca, F.A. Nicolescu, D.S. Vasilescu, et al., Dispersion polymerization of an azo-monomer and methylmethacrylate in the presence of oxazoline macromonomer. P Soc Photo-Opt Ins 7838 (2010)Google Scholar
  221. 221.
    V. Marturano, P. Cerruti, C. Carfagna, et al., Photo-responsive polymer nanocapsules. Polymer 70, 222–230 (2015)CrossRefGoogle Scholar
  222. 222.
    J. Keyvan Rad, A.R. Mahdavian, H. Salehi-Mobarakeh, et al., FRET phenomenon in photoreversible dual-color fluorescent polymeric nanoparticles based on azocarbazole/spiropyran derivatives. Macromolecules 49, 141–152 (2016)CrossRefGoogle Scholar
  223. 223.
    M.W. Urban, Stimuli-responsive colloids: from stratified to self-repairing polymeric films and beyond. Curr. Opin. Colloid Interface Sci. 19, 66–75 (2014)CrossRefGoogle Scholar
  224. 224.
    D. Hu, Z. Tian, W. Wu, et al., Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy. J. Am. Chem. Soc. 130, 15279–15281 (2008)CrossRefGoogle Scholar
  225. 225.
    Z. Tian, W. Wu, W. Wan, et al., Single-chromophore-based photoswitchable nanoparticles enable dual-alternating-color fluorescence for unambiguous live cell imaging. J. Am. Chem. Soc. 131, 4245–4252 (2009)CrossRefGoogle Scholar
  226. 226.
    A.D.Q. Li, C. Zhan, D. Hu, et al., Photoswitchable nanoprobes offer unlimited brightness in frequency-domain imaging. J. Am. Chem. Soc. 133, 7628–7631 (2011)CrossRefGoogle Scholar
  227. 227.
    W. Denk, J. Strickler, W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)CrossRefGoogle Scholar
  228. 228.
    S.L. Ashworth, R.M. Sandoval, G.A. Tanner, et al., Two-photon microscopy: visualization of kidney dynamics. Kidney Int. 72, 416–421 (2007)CrossRefGoogle Scholar
  229. 229.
    K. Svoboda, R. Yasuda, Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839 (2006)CrossRefGoogle Scholar
  230. 230.
    Y. Imanishi, K.H. Lodowski, Y. Koutalos, Two-photon microscopy: shedding light on the chemistry of vision. Biochemistry 46, 9674–9684 (2007)CrossRefGoogle Scholar
  231. 231.
    J.A. Scherschel, M. Rubart, Cardiovascular Imaging Using Two-Photon Microscopy. Microsc. Microanal. 14, 492–506 (2008)CrossRefGoogle Scholar
  232. 232.
    S. Yao, K.D. Belfield, Two-photon fluorescent probes for bioimaging. Eur. J. Org. Chem. 2012, 3199–3217 (2012)CrossRefGoogle Scholar
  233. 233.
    H.M. Kim, B.R. Cho, Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 115, 5014–5055 (2015)CrossRefGoogle Scholar
  234. 234.
    Y.I. Park, K.T. Lee, Y.D. Suh, et al., Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem. Soc. Rev. 44, 1302–1317 (2015)CrossRefGoogle Scholar
  235. 235.
    C.S. Lim, B.R. Cho, Two-photon probes for biomedical imaging. Tetrahedron 71, 8219–8249 (2015)CrossRefGoogle Scholar
  236. 236.
    I.M. Schießl, H. Castrop, Deep insights: intravital imaging with two-photon microscopy. Pflügers Arch.: Eur. J. Physiol. 468, 1505–1516 (2016)CrossRefGoogle Scholar
  237. 237.
    F. Wang, E. Bélanger, M.-E. Paquet, et al., Probing pain pathways with light. Neuroscience 338, 248–271 (2016)CrossRefGoogle Scholar
  238. 238.
    Z. Yang, A. Sharma, J. Qi, et al., Super-resolution fluorescent materials: an insight into design and bioimaging applications. Chem. Soc. Rev. 45, 4651–4667 (2016)CrossRefGoogle Scholar
  239. 239.
    B. Huang, M. Bates, X.W. Zhuang, Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009)CrossRefGoogle Scholar
  240. 240.
    T.A. Klar, S.W. Hell, Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954–956 (1999)CrossRefGoogle Scholar
  241. 241.
    S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated-emission - stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)CrossRefGoogle Scholar
  242. 242.
    Y. Zhang, C.Y. Ang, M. Li, et al., Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery. ACS Appl. Mater. Interfaces 7, 18,179–18,187 (2015)CrossRefGoogle Scholar
  243. 243.
    C.M. Buffinton, K.J. Tong, R.A. Blaho, et al., Comparison of mechanical testing methods for biomaterials: pipette aspiration, nanoindentation, and macroscale testing. J. Mech. Behav. Biomed. Mater. 51, 367–379 (2015)CrossRefGoogle Scholar
  244. 244.
    A.M. Rosales, K.M. Mabry, E.M. Nehls, et al., Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015)CrossRefGoogle Scholar
  245. 245.
    E.R. Draper, R. Schweins, R. Akhtar, et al., Reversible photoreduction as a trigger for photoresponsive gels. Chem. Mater. 28, 6336–6341 (2016)CrossRefGoogle Scholar
  246. 246.
    P.J. Nowatzki, C. Franck, S.A. Maskarinec, et al., Mechanically tunable thin films of photosensitive artificial proteins: preparation and characterization by nanoindentation. Macromolecules 41, 1839–1845 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Organic Chemistry “C. D. Nenitzescu”, Romanian AcademyBucharestRomania
  2. 2.Supramolecular Chemistry Group, Department of Organic and Macromolecular ChemistryGhent UniversityGhentBelgium
  3. 3.Faculty of Medical EngineeringUniversity Politehnica of BucharestBucharestRomania
  4. 4.Advanced Polymer Materials GroupUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations