Advertisement

The Role of Melanin-Concentrating Hormone in the Regulation of the Sleep/Wake Cycle: Sleep Promoter or Arousal Modulator?

  • Xiao-Bing Gao
Chapter

Abstract

The neuronal system that resides in the perifornical/lateral hypothalamus (Pf/LH) and synthesizes the neuropeptide melanin-concentrating hormone (MCH) participates in critical brain functions across species from fish to human. The MCH system was originally reported to regulate neural activity responsible for the change of skin color in lower vertebrates (such as fish), homeostatic functions (e.g., feeding and energy balance), and complex behaviors (e.g., reward seeking/addiction, depression/anxiety) in higher animals. The most recent evidence indicates that MCH participates in the regulation of sleep in animals as well. In this chapter, we summarize the evidence supporting the role of MCH in the regulation of sleep homeostasis in animals and discuss its physiological implications in the context of MCH as a central node of the overall brain circuitry controlling physiological functions and complex behaviors in animals.

Keywords

Melanin-concentrating hormone (MCH) Perifornical/lateral hypothalamus Energy balance Sleep–wake homeostasis 

Notes

Acknowledgments

The author’s work has been supported by NIH/NIDA grant DA040782-01A1. The author would like to thank Ms. Marya Shanabrough for assistance in preparing the manuscript.

References

  1. Abbott CR, Kennedy AR, Wren AM, Rossi M, Murphy KG, Seal LJ, Todd JF, Ghatei MA, Small CJ, Bloom SR (2003) Identification of hypothalamic nuclei involved in the orexigenic effect of melanin-concentrating hormone. Eur J Pharmacol 475:37–47CrossRefGoogle Scholar
  2. Adamantidis A, Thomas E, Foidart A, Tyhon A, Coumans B, Minet A, Tirelli E, Seutin V, Grisar T, Lakaye B (2005) Disrupting the melanin-concentrating hormone receptor 1 in mice leads to cognitive deficits and alterations of NMDA receptor function. Eur J Neurosci 21:2837–2844PubMedCrossRefGoogle Scholar
  3. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424PubMedCrossRefGoogle Scholar
  4. Adamantidis A, Salvert D, Goutagny R, Lakaye B, Gervasoni D, Grisar T, Luppi PH, Fort P (2008) Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. Eur J Neurosci 27:1793–1800PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ahnaou A, Drinkenburg WH, Bouwknecht JA, Alcazar J, Steckler T, Dautzenberg FM (2008) Blocking melanin-concentrating hormone MCH1 receptor affects rat sleep-wake architecture. Eur J Pharmacol 579:177–188PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ahnaou A, Dautzenberg FM, Huysmans H, Steckler T, Drinkenburg WH (2011) Contribution of melanin-concentrating hormone (MCH1) receptor to thermoregulation and sleep stabilization: evidence from MCH1 (−/−) mice. Behav Brain Res 218:42–50CrossRefPubMedGoogle Scholar
  7. Alam MN, Gong H, Alam T, Jaganath R, McGinty D, Szymusiak R (2002) Sleep-waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area. J Physiol 538:619–631PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anaclet C, Fuller PM (2017) Brainstem regulation of slow-wave-sleep. Curr Opin Neurobiol 44:139–143PubMedCrossRefPubMedCentralGoogle Scholar
  9. Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, Fuller PM (2014) The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat Neurosci 17:1217–1224PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baker BI, Eberle AN, Baumann JB, Siegrist W, Girard J (1985) Effect of melanin concentrating hormone on pigment and adrenal cells in vitro. Peptides 6:1125–1130PubMedCrossRefGoogle Scholar
  11. Bächner D, Kreienkamp H, Weise C, Buck F, Richter D (1999) Identification of melanin concentrating hormone (MCH) as the natural ligand for the orphan somatostatin-like receptor 1 (SLC-1). FEBS Lett 457:522–524PubMedPubMedCentralCrossRefGoogle Scholar
  12. Benedetto L, Rodriguez-Servetti Z, Lagos P, D’Almeida V, Monti JM, Torterolo P (2013) Microinjection of melanin concentrating hormone into the lateral preoptic area promotes non-REM sleep in the rat. Peptides 39:11–15PubMedPubMedCentralCrossRefGoogle Scholar
  13. Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K (2008) Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA 105:4242–4246PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon J-L, Vale W, Sawchenko PE (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319:218–245PubMedPubMedCentralCrossRefGoogle Scholar
  15. Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, Shiromani PJ (2016) Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 44:2846–2857PubMedPubMedCentralCrossRefGoogle Scholar
  16. Borbély AA (1977) Sleep in the rat during food deprivation and subsequent restitution of food. Brain Res 124:457–471PubMedCrossRefGoogle Scholar
  17. Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B, Heurich R, Lichtblau H, Shaposhnik Z, Daniewska I, Blackburn TP, Branchek TA, Gerald C, Vaysse PJ, Forray C (2002) Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med 8:825–830PubMedPubMedCentralCrossRefGoogle Scholar
  18. Boyce R, Williams S, Adamantidis A (2017) REM sleep and memory. Curr Opin Neurobiol 44:167–177PubMedCrossRefGoogle Scholar
  19. Bresson JL, Clavequin MC, Fellmann D, Bugnon C (1987) Ontogenetic data on the peptidergic interneuronal population in immunoreactivity of the GRF 37 type serum of the human posterolateral hypothalamus. Immunocytochemical studies using anti-GRF 37 and anti-MCH (melanin-concentrating hormone) immune sera. C R Seances Soc Biol Fil 181:376–382PubMedGoogle Scholar
  20. Brischoux F, Fellmann D, Risold PY (2001) Ontogenetic development of the diencephalic MCH neurons: a hypothalamic ‘MCH area’ hypothesis. Eur J Neurosci 13:1733–1744PubMedCrossRefGoogle Scholar
  21. Chambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin J, Liu WS, Park J, Ellis C, Ganguly S, Konchar S, Cluderay J, Leslie R, Wilson S, Sarau HM (1999) Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400:261–265PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chee MJ, Pissios P, Maratos-Flier E (2013) Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. J Comp Neurol 521:2208–2234PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chee MJ, Arrigoni E, Maratos-Flier E (2015) Melanin-concentrating hormone neurons release glutamate for feedforward inhibition of the lateral septum. J Neurosci 35:3644–3651PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chung S, Hopf FW, Nagasaki H, Li CY, Belluzzi JD, Bonci A, Civelli O (2009) The melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci USA 106:6772–6777PubMedPubMedCentralCrossRefGoogle Scholar
  26. Clegg DJ, Air EL, Benoit SC, Sakai RS, Seeley RJ, Woods SC (2003) Intraventricular melanin-concentrating hormone stimulates water intake independent of food intake. Am J Physiol Regul Integr Comp Physiol 284:R494–R499PubMedCrossRefGoogle Scholar
  27. Clément O, Sapin E, Libourel PA, Arthaud S, Brischoux F, Fort P, Luppi PH (2012) The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons. J Neurosci 32:16763–16774PubMedPubMedCentralCrossRefGoogle Scholar
  28. David DJ, Klemenhagen KC, Holick KA, Saxe MD, Mendez I, Santarelli L, Craig DA, Zhong H, Swanson CJ, Hegde LG, Ping XI, Dong D, Marzabadi MR, Gerald CP, Hen R (2007) Efficacy of the MCHR1 antagonist N-[3-(1-{[4-(3,4-difluorophenoxy) phenyl]methyl}(4-piperidyl))-4-methylphenyl]-2-m ethylpropanamide (SNAP 94847) in mouse models of anxiety and depression following acute and chronic administration is independent of hippocampal neurogenesis. J Pharmacol Exp Ther 321:237–248PubMedPubMedCentralCrossRefGoogle Scholar
  29. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327PubMedPubMedCentralCrossRefGoogle Scholar
  30. Del Cid-Pellitero E, Jones BE (2012) Immunohistochemical evidence for synaptic release of GABA from melanin-concentrating hormone containing varicosities in the locus coeruleus. Neuroscience 223:269–276PubMedPubMedCentralCrossRefGoogle Scholar
  31. Della-Zuana O, Presse F, Ortola C, Duhault J, Nahon JL, Levens N (2002) Acute and chronic administration of melanin-concentrating hormone enhances food intake and body weight in Wistar and Sprague-Dawley rats. Int J Obes Relat Metab Disord 26:1289–1295PubMedPubMedCentralCrossRefGoogle Scholar
  32. Domingos AI, Sordillo A, Dietrich MO, Liu ZW, Tellez LA, Vaynshteyn J, Ferreira JG, Ekstrand MI, Horvath TL, de Araujo IE, Friedman JM (2013) Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. Elife 2:e01462PubMedPubMedCentralCrossRefGoogle Scholar
  33. Eberle AN (1988) Melanin-concentrating hormone. In: Eberle AN (ed) The melanotropins. Karger, Basel, pp 321–332Google Scholar
  34. Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M, Saper CB, Scammell TE (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21:1656–1662PubMedCrossRefGoogle Scholar
  35. Fujiki N, Yoshida Y, Ripley B, Honda K, Mignot E, Nishino S (2001) Changes in CSF hypocretin-1 (orexin A) levels in rats across 24 hours and in response to food deprivation. Neuroreport 12:993–997PubMedCrossRefGoogle Scholar
  36. García-Fuster MJ, Parks GS, Clinton SM, Watson SJ, Akil H, Civelli O (2012) The melanin-concentrating hormone (MCH) system in an animal model of depression-like behavior. Eur Neuropsychopharmacol 22:607–613PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gao XB, van den Pol AN (2001) Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. J Physiol 533:237–252PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gao XB, van den Pol AN (2002) Melanin-concentrating hormone depresses L-, N-, and P/Q-type voltagedependent calcium channels in rat lateral hypothalamic neurons. J Physiol 542:273–286PubMedPubMedCentralCrossRefGoogle Scholar
  39. Georgescu D, Sears RM, Hommel JD, Barrot M, Bolanos CA, Marsh DJ, Bednarek MA, Bibb JA, Maratos-Flier E, Nestler EJ, DiLeone RJ (2005) The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci 25:2933–2940CrossRefPubMedGoogle Scholar
  40. González JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D (2016) Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun 7:11395PubMedPubMedCentralCrossRefGoogle Scholar
  41. Guan JL, Uehara K, Lu S, Wang QP, Funahashi H, Sakurai T, Yanagizawa M, Shioda S (2002) Reciprocal synaptic relationships between orexin- and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation. Int J Obes Relat Metab Disord 26:1523–1532PubMedPubMedCentralCrossRefGoogle Scholar
  42. Guemez-Gamboa A, Coufal NG, Gleeson JG (2014) Primary cilia in the developing and mature brain. Neuron 82:511–521PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hamamoto A, Yamato S, Katoh Y, Nakayama K, Yoshimura K, Takeda S, Kobayashi Y, Saito Y (2016) Modulation of primary cilia length by melanin-concentrating hormone receptor 1. Cell Signal 28:572–584PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hanriot L, Camargo N, Courau AC, Leger L, Luppi PH, Peyron C (2007) Characterization of the melanin-concentrating hormone neurons activated during paradoxical sleep hypersomnia in rats. J Comp Neurol 505:147–157PubMedCrossRefGoogle Scholar
  45. Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci USA 106:2418–2422PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ito M, Gomori A, Ishihara A, Oda Z, Mashiko S, Matsushita H, Yumoto M, Ito M, Sano H, Tokita S, Moriya M, Iwaasa H, Kanatani A (2003) Characterization of MCH-mediated obesity in mice. Am J Physiol Endocrinol Metab 284(5):E940PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16:1637–1643PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kawauchi H, Kawazoe I, Tsubokawa M, Kishida M, Baker BI (1983) Characterization of melanin-concentrating hormone in chum salmon pituitaries. Nature 305:321–323PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kilduff TS, de Lecea L (2001) Mapping of the mRNAs for the hypocretin/orexin and melanin-concentrating hormone receptors: networks of overlapping peptide systems. J Comp Neurol 435:1–5PubMedCrossRefGoogle Scholar
  50. Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen WB Jr, van den Pol AN, Mulholland PJ, Shiromani PJ (2013) Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33:10257–10263PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lagos P, Torterolo P, Jantos H, Chase MH, Monti JM (2009) Effects on sleep of melanin-concentrating hormone (MCH) microinjections into the dorsal raphe nucleus. Brain Res 1265:103–110PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lagos P, Torterolo P, Jantos H, Monti JM (2011a) Immunoneutralization of melanin-concentrating hormone (MCH) in the dorsal raphe nucleus: effects on sleep and wakefulness. Brain Res 1369:112–118PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lagos P, Urbanavicius J, Scorza MC, Miraballes R, Torterolo P (2011b) Depressive-like profile induced by MCH microinjections into the dorsal raphe nucleus evaluated in the forced swim test. Behav Brain Res 218:259–266PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lagos P, Monti JM, Jantos H, Torterolo P (2012) Microinjection of the melanin-concentrating hormone into the lateral basal forebrain increases REM sleep and reduces wakefulness in the rat. Life Sci 90:895–899PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25:6716–6720PubMedCrossRefGoogle Scholar
  56. Lembo PMC, Grazzini E, Cao J, Hubatsch DA, Pelletier M, Hoffert C, St-Onge S, Pou C, Labrecque J, Groblewski T, O'Donnell D, Payza K, Ahmad S, Walker P (1999) The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nat Cell Biol 1:267–271PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376PubMedCrossRefPubMedCentralGoogle Scholar
  58. Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier JS, Maratos-Flier E (2001) Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest 107:379–386PubMedPubMedCentralCrossRefGoogle Scholar
  59. Marsh DJ, Weingarth DT, Novi DE, Chen HY, Trumbauer ME, Chen AS, Guan XM, Jiang MM, Feng Y, Camacho RE, Shen Z, Frazier EG, Yu H, Metzger JM, Kuca SJ, Shearman LP, Gopal-Truter S, MacNeil DJ, Strack AM, MacIntyre DE, Van der Ploeg LH, Qian S (2002) Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA 99(5):3240PubMedPubMedCentralCrossRefGoogle Scholar
  60. Matsuda K, Shimakura SI, Miura T, Maruyama K, Uchiyama M, Kawauchi H et al (2007) Feeding-induced changes of melanin-concentrating hormone (MCH)-like immunoreactivity in goldfish brain. Cell Tissue Res 328:375–382PubMedCrossRefGoogle Scholar
  61. Mickelsen LE, Kolling FW 4th, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE, Jackson AC (2017) Neurochemical heterogeneity among lateral hypothalamic hypocretin/orexin and melanin-concentrating hormone neurons identified through single-cell gene expression analysis. eNeuro 4(5)PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798PubMedPubMedCentralCrossRefGoogle Scholar
  63. Modirrousta M, Mainville L, Jones BE (2005) Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. Eur J Neurosci 21:2807–2816PubMedPubMedCentralCrossRefGoogle Scholar
  64. Monti JM, Lagos P, Jantos H, Torterolo P (2015) Increased REM sleep after intra-locus coeruleus nucleus microinjection of melanin-concentrating hormone (MCH) in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry 56:185–188CrossRefGoogle Scholar
  65. Mori M, Harada M, Terao Y, Sugo T, Watanabe T, Shimomura Y, Abe M, Shintani Y, Onda H, Nishimura O, Fujino M (2001) Cloning of a novel G protein-coupled receptor, SLT, a subtype of the melanin-concentrating hormone receptor. Biochem Biophys Res Commun 283:1013–1018PubMedPubMedCentralCrossRefGoogle Scholar
  66. Morton GJ, Mystkowski P, Matsumoto AM, Schwartz MW (2004) Increased hypothalamic melanin concentrating hormone gene expression during energy restriction involves a melanocortin-independent, estrogen-sensitive mechanism. Peptides 25:667–674PubMedCrossRefGoogle Scholar
  67. Mystkowski P, Seeley RJ, Hahn TM, Baskin DG, Havel PJ, Matsumoto AM, Wilkinson CW, Peacock-Kinzig K, Blake KA, Schwartz MW (2000) Hypothalamic melanin-concentrating hormone and estrogen-induced weight loss. J Neurosci 20:8637–8642PubMedCrossRefGoogle Scholar
  68. Nahon JL, Presse F, Bittencourt JC, Sawchenko PE, Vale W (1989) The rat melanin-concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus. Endocrinology 125:2056–2065PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355:39–40PubMedCrossRefPubMedCentralGoogle Scholar
  70. Oh EC, Vasanth S, Katsanis N (2015) Metabolic regulation and energy homeostasis through the primary cilium. Cell Metab 21:21–31PubMedCrossRefGoogle Scholar
  71. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek R, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380:243–247CrossRefPubMedGoogle Scholar
  72. Rance T, Baker BI (1979) The teleost melanin-concentrating hormone—a pituitary hormone of hypothalamic origin. Gen Comp Endocrinol 37:64–73PubMedCrossRefGoogle Scholar
  73. Rao Y, Lu M, Ge F, Marsh DJ, Qian S, Wang AH, Picciotto MR, Gao XB (2008) Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus. J Neurosci 28:9101–9110PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ripley B, Overeem S, Fujiki N, Nevsimalova S, Uchino M, Yesavage J, Di Monte D, Dohi K, Melberg A, Lammers GJ, Nishida Y, Roelandse FW, Hungs M, Mignot E, Nishino S (2001) CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 57:2253–2258PubMedCrossRefGoogle Scholar
  75. Roecker AJ, Cox CD, Coleman PJ (2016) Orexin receptor antagonists: new therapeutic agents for the treatment of insomnia. J Med Chem 59:504–530PubMedCrossRefGoogle Scholar
  76. Rossi M, Beak SA, Choi SJ, Small CJ, Morgan DGA, Ghatei MA, Smith DM, Bloom SR (1999) Investigation of the feeding effects of melanin concentrating hormone on food intake – action independent of galanin and the melancortin receptors. Brain Res 846:164–170PubMedCrossRefGoogle Scholar
  77. Saito Y, Nothacker HP, Wang ZW, Lin SHS, Leslie F, Civelli O (1999) Molecular characterization of the melanin-concentrating-hormone receptor. Nature 400:265–269PubMedPubMedCentralCrossRefGoogle Scholar
  78. Saito Y, Cheng M, Leslie FM, Civelli O (2001) Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol 435:26–40PubMedPubMedCentralCrossRefGoogle Scholar
  79. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585PubMedPubMedCentralCrossRefGoogle Scholar
  80. Sapin E, Bérod A, Léger L, Herman PA, Luppi PH, Peyron C (2010) A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM) sleep hypersomnia. PLoS One 5:e11766PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sears RM, Liu RJ, Narayanan NS, Sharf R, Yeckel MF, Laubach M, Aghajanian GK, DiLeone RJ (2010) Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone. J Neurosci 30:8263–8273PubMedPubMedCentralCrossRefGoogle Scholar
  82. Shearman LP, Camacho RE, Sloan Stribling D, Zhou D, Bednarek MA, Hreniuk DL, Feighner SD, Tan CP, Howard AD, Van der Ploeg LH, MacIntyre DE, Hickey GJ, Strack AM (2003) Chronic MCH-1 receptor modulation alters appetite, body weight and adiposity in rats. Eur J Pharmacol 475:37–47PubMedPubMedCentralCrossRefGoogle Scholar
  83. Shimada M, Tritos NA, Lowell BB, Flier LS, Maratos-Flier E (1998) Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396:670–674PubMedPubMedCentralCrossRefGoogle Scholar
  84. Shimomura Y, Mori M, Sugo T, Ishibashi Y, Abe M, Kurokawa T, Onda H, Nishimura O, Sumino Y, Fujino M (1999) Isolation and identification of melanin-concentrating hormone as the endogenous ligand of the SLC-1 receptor. Biochem Biophys Res Commun 261:622–626PubMedPubMedCentralCrossRefGoogle Scholar
  85. Shimakura S, Marayama K, Miura T, Uchiyama M, Kawauchi H, Takahashi A et al (2006) Effect of melanin-concentrating hormone on feeding behavior and locomotor activity in the goldfish, Carassius auratus. Regul Pept 135:156Google Scholar
  86. Skofitsch G, Jacobowitz DM, Zamir N (1985) Immunohistochemical localization of a melanin concentrating hormone-like peptide in the rat brain. Brain Res Bull 15:635–649PubMedCrossRefGoogle Scholar
  87. Steininger TL, Alam MN, Gong H, Szymusiak R, McGinty D (1999) Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 840:138–147PubMedCrossRefGoogle Scholar
  88. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474PubMedPubMedCentralCrossRefGoogle Scholar
  89. Tomoshige S, Kobayashi Y, Hosoba K, Hamamoto A, Miyamoto T, Saito Y (2017) Cytoskeleton-related regulation of primary cilia shortening mediated by melanin-concentrating hormone receptor 1. Gen Comp Endocrinol 253:44–52PubMedCrossRefGoogle Scholar
  90. Torterolo P, Sampogna S, Morales FR, Chase MH (2006) MCH-containing neurons in the hypothalamus of the cat: searching for a role in the control of sleep and wakefulness. Brain Res 1119:101–114PubMedPubMedCentralCrossRefGoogle Scholar
  91. Torterolo P, Sampogna S, Chase MH (2009) MCHergic projections to the nucleus pontis oralis participate in the control of active (REM) sleep. Brain Res 1268:76–87CrossRefPubMedGoogle Scholar
  92. Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A (2014) Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 34:6896–6909PubMedPubMedCentralCrossRefGoogle Scholar
  93. Tuziak SM, Volkoff H (2012) A preliminary investigation of the role of melanin-concentrating hormone (MCH) and its receptors in appetite regulation of winter flounder (Pseudopleuronectes americanus). Mol Cell Endocrinol 348:281–296PubMedCrossRefGoogle Scholar
  94. Tuziak SM, Volkoff H (2013) Melanin-concentrating hormone (MCH) and gonadotropin-releasing hormones (GnRH) in Atlantic cod, Gadus morhua: tissue distributions, early ontogeny and effects of fasting. Peptides 50:109–118PubMedCrossRefGoogle Scholar
  95. van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK (2004) Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 42:635–652PubMedPubMedCentralCrossRefGoogle Scholar
  96. Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Léger L, Boissard R, Salin P, Peyron C, Luppi PH (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4:19PubMedPubMedCentralCrossRefGoogle Scholar
  97. Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB (2016) Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 336:102–113PubMedPubMedCentralCrossRefGoogle Scholar
  98. von Economo C (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259CrossRefGoogle Scholar
  99. Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M (2008) Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience 156:819–829PubMedPubMedCentralCrossRefGoogle Scholar
  100. Wu M, Dumalska I, Morozova E, van den Pol A, Alreja M (2009) Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proc Natl Acad Sci U S A 106:17217–17222PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yoshida Y, Fujiki N, Nakajima T, Ripley B, Matsumura H, Yoneda H, Mignot E, Nishino S (2001) Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities. Eur J Neurosci 14:1075–1081PubMedCrossRefGoogle Scholar
  102. Zeitzer JM, Buckmaster CL, Parker KJ, Hauck CM, Lyons DM, Mignot E (2003) Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J Neurosci 23:3555–3560PubMedCrossRefGoogle Scholar
  103. Zheng H, Patterson LM, Morrison C, Banfield BW, Randall JA, Browning KN, Travagli RA, Berthoud HR (2005) Melanin concentrating hormone innervation of caudal brainstem areas involved in gastrointestinal functions and energy balance. Neuroscience 135:611–625PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Comparative Medicine, Program on Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM)Yale University School of MedicineNew HavenUSA

Personalised recommendations