A Novel Perfect Privacy PIR Scheme for Privacy Critical Applications

  • Radhakrishna Bhat
  • N. R. Sunitha
Conference paper


Majority of the business vendors have incorporated the policy-driven privacy setting that greatly disappoints the end user or customer even though the protocol-based privacy assurance is strongly expected. The reason behind this major disagreement between the vendor and the customer is due to the business survival necessity or the business expansion for the vendor and the mandatory technology adoption or the business monopoly creation for the customer. In order to cope up with the exponentially growing business needs, both vendor and customer have to agree upon the protocol-based privacy setting. Therefore, we have proposed a new generic (i.e., applicable for both client-server and peer-to-peer) perfect privacy preserving information retrieval protocol using the concept of Private Information Retrieval (PIR).

More interestingly, we have overcome the trivial solution of downloading the entire database by achieving o(n) communication cost by introducing a new perfect privacy preserving single database private information retrieval for privacy critical applications using quadratic residuosity as the underlying data privacy primitive. Finally, we have concluded by claiming a generic scheme suitable for privacy critical applications.


Perfect privacy Private information retrieval PIR Quadratic residuosity Privacy critical applications 


  1. 1.
    Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: a unified construction. In: Proceedings of 28th ICALP, pp. 912–926. Springer, Berlin (2001)Google Scholar
  2. 2.
    Beimel, A., Stahl, Y.: Robust information-theoretic private information retrieval. J. Cryptol. 20(3), 295–321 (2007)Google Scholar
  3. 3.
    Benny, C., Niv, G., Moni, N.: Private information retrieval by keywords. Cryptology ePrint Archive, Report 1998/003 (1998).
  4. 4.
    Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Proceeedings of 17th Theory and Application of Cryptographic Techniques, EUROCRYPT’99, pp. 402–414. Springer, Berlin (1999)Google Scholar
  5. 5.
    Chang, Y.C.: Single Database Private Information Retrieval with Logarithmic Communication, pp. 50–61. Springer, Berlin (2004)Google Scholar
  6. 6.
    Chor, B., Gilboa, N.: Computationally private information retrieval (extended abstract). In: Proceedings of 29th STOC, pp. 304–313. ACM, New York (1997)Google Scholar
  7. 7.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proceedings of the 36th FOCS, pp. 41–50. IEEE Computer Society, Washington (1995)Google Scholar
  8. 8.
    Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM 45(6), 965–981 (1998)Google Scholar
  9. 9.
    Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single Database Private Information Retrieval Implies Oblivious Transfer, pp. 122–138. Springer, Berlin (2000)Google Scholar
  10. 10.
    Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions of lossy and correlation-secure trapdoor functions. Cryptology ePrint Archive, Report 2009/590 (2009).
  11. 11.
    Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant communication rate. In: Proceedings of 32nd ICALP, pp. 803–815. Springer, Berlin (02005)Google Scholar
  12. 12.
    Gertner, Y., Goldwasser, S., Malkin, T.: A random server model for private information retrieval or how to achieve information theoretic pir avoiding database replication. In: Proceedings of 2nd RANDOM, pp. 200–217. Springer, Berlin (1998)Google Scholar
  13. 13.
    Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. In: Proceedings of 13th STOC, pp. 151–160. ACM, New York (1998)Google Scholar
  14. 14.
    Groth, J., Kiayias, A., Lipmaa, H.: Multi-query computationally-private information retrieval with constant communication rate. In: Proceedings of 13th PKC, pp. 107–123. Springer, Berlin (2010)Google Scholar
  15. 15.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity. In: Proceedings of 47th FOCS, pp. 239–248. IEEE Computer Society, Washington (2006)Google Scholar
  16. 16.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: Proceedings of 38th FOCS, pp. 364–. IEEE Computer Society, Washington (1997)Google Scholar
  17. 17.
    Kushilevitz, E., Ostrovsky, R.: One-way trapdoor permutations are sufficient for non-trivial single-server private information retrieval. In: Proceedings of 19th Theory and Application of Cryptographic Techniques, EUROCRYPT’00, pp. 104–121. Springer, Berlin (2000)Google Scholar
  18. 18.
    Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In: Proceedings of 8th ISC, pp. 314–328. Springer, Berlin (2005)Google Scholar
  19. 19.
    Melchor, C.A., Gaborit, P.: A lattice-based computationally-efficient private information retrieval protocol (2007)Google Scholar
  20. 20.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of 31st STOC, pp. 245–254. ACM, New York (1999)Google Scholar
  21. 21.
    Rabin, M.O.: How to exchange secrets with oblivious transfer. Harvard University Technical Report (2005)Google Scholar
  22. 22.
    Shah, N.B., Rashmi, K.V., Ramchandran, K.: One extra bit of download ensures perfectly private information retrieval. In: IEEE International Symposium on Information Theory, pp. 856–860 (2014)Google Scholar
  23. 23.
    Toledo, R.R., Danezis, G., Goldberg, I.: Lower-cost epsilon-private information retrieval. CoRR abs/1604.00223 (2016)Google Scholar
  24. 24.
    Trostle, J., Parrish, A.: Efficient computationally private information retrieval from anonymity or trapdoor groups. In: Proceedings of 13th ISC, pp. 114–128. Springer, Berlin (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Radhakrishna Bhat
    • 1
  • N. R. Sunitha
    • 1
  1. 1.Siddaganga Institute of TechnologyTumakuruIndia

Personalised recommendations