Advertisement

Accelerating the Big Data Analytics by GPU-Based Machine Learning: A Survey

  • K. Bhargavi
  • B. Sathish Babu
Conference paper

Abstract

Today a large volume of structured and unstructured data is being generated online; the main sources for big data are social media profiles, MOOC (massive open online courses) log, social influencer, Internet of Things (IoT) data, the web, transactional applications, stream monitoring technologies, NoSQL (not only structured query language) stored data, log files, legacy document, and so on. There is a need to analyze such huge volume of data at a faster rate by uncovering the hidden patterns and correlation between the data to provide intelligent business decisions with high accuracy. The GPU (graphics processing unit)-enabled machine learning-based techniques are the strongest solution being used to perform big data analytics operation at an accelerated speed. This paper discusses selective GPU-based machine learning algorithms like decision tree, neural network, random forest, Q-learning, SARSA learning, K-means, NB (naive Bayes), AdaBoost, deep learning, support vector machine (SVM), linear regression, logistic regression, Apriori, and HMM (hidden Markov model) being used for big data analysis.

Keywords

Machine learning Big data GPU Acceleration Analytics 

References

  1. 1.
    Hua, F., Zhaoyang, Z., Chanpaul, J.W., Mahmoud, D., Chonggang, W., Honggang, W.: A survey of big data research. IEEE Netw. 29(5), 6–9 (2015)Google Scholar
  2. 2.
    Acharjya, D.P., Kauser, A.P.: Survey on big data analytics: challenges, open research issues and tools. Int. J. Adv. Comput. Sci. Appl. 7(2), 1–11 (2016)Google Scholar
  3. 3.
    Win-Tsung, L., Yue-Shan, C., Ruey-Kai, S., Chun-Chieh, C., Shyan-Ming, Y.: CUDT: a CUDA based decision tree algorithm. Sci. World J. 2014, 745640 (2014)Google Scholar
  4. 4.
    Toby, S.: Implementing decision trees and forests on a GPU. In: Computer Vision-ECCV 2008. Lecture Notes in Computer Science, vol. 5305, pp. 595–608. Springer, Berlin (2008)Google Scholar
  5. 5.
    Raghavendra, D.P.: GNeuron: parallel neural networks with GPU. In: International Conference on High Performance Computing, posters (2007)Google Scholar
  6. 6.
    Mitchell, L., Sloan, T.M., Mewissen, M., Ghazal, P., Forster, T., Ptotwski, M., Andtrew, A.S.: A parallel random forest classifier for R. In: Proceedings of the Second International Workshop on Emerging Computational Methods for the Life Sciences (2011)Google Scholar
  7. 7.
    Dongbin, Z., Haitao, W., Shao, K., Yuanheng, Z.: Deep reinforcement learning with experience replay based on SARSA. In: IEEE Symposium Series on Computational Intelligence (SSCI). This work was supported in part by National Natural Science Foundation of China, IEEE (2016)Google Scholar
  8. 8.
    Iuri, F., Stephen, T., Jason, C., Jan, K.: GA3C: GPU-based A3C for deep reinforcement learning. In: 30th Conference on Neural Information Processing Systems (NIPS 2016)Google Scholar
  9. 9.
    Mario, Z., Michael, G.: Accelerating K-means on the graphics processor via CUDA. In: First International Conference on Intensive Applications and Services, IEEE (2009)Google Scholar
  10. 10.
    Lei, Z., Hai, J., Ran, Z., Xiaowen, F.: Effective naive bayes nearest based image classification on GPU. J. Supercomput. 68(2), 820–848 (2014)Google Scholar
  11. 11.
    Felipe, V., Guilherme, A., Jussara, A., Gabriel, R., Leonardo, R.: GPU-NB: a fast CUDA-based implementation of naive bayes. In: International Symposium on Computer Architecture and High Performance Computing (2013)Google Scholar
  12. 12.
    Pin, Y.T., Yarsun, H., Ching-Te, C., Tsai-Te, C.: Accelerating AdaBoost algorithm using GPU for multi-object recognition. In: IEEE International Symposium on Circuits and Systems (ISCAS) (2015)Google Scholar
  13. 13.
    Bryan, C., Narayanan, S., Kurt, K.: Fast support vector machine training and classification on graphics processors. In: 25th international Conference on Machine Learning. ACM (2008)Google Scholar
  14. 14.
    Quan, L., Jibo, W., Yue, W., Watson, I.A.: GPU accelerated support vector machines for mining high-throughput screening data. J. Chem. Inf. Model. 49(12), 2718–2725 (2009)CrossRefGoogle Scholar
  15. 15.
    Vaibhav, M., Mayank, G: Data regression with normal equation on GPU using CUDA. Int. J. Comput. Sci. Inf. Technol. Secur. 2(2), 418–422 (2012)Google Scholar
  16. 16.
    John, C.: Extreme machine learning with GPUs. Computer Science Division, University of California, Berkeley (2014)Google Scholar
  17. 17.
    Larsen, A.B.L.: CUDArray: CUDA-based NumPy. DTU Compute Technical Report (2014)Google Scholar
  18. 18.
    Chuan, L.: cuHMM: a CUDA implementation of hidden Markov model training and classication. The Chronicle of Higher Education (2009)Google Scholar
  19. 19.
    Spandana, K., Sirisha, D., Shahida, S.: Parallelizing Apriori algorithm on GPU. Int. J. Comput. Appl. 155(10), 22–27 (2016)CrossRefGoogle Scholar
  20. 20.
    Fan, Z., Yan, Z., Jason, B.: GPApriori: GPU-accelerated frequent itemset mining. In: IEEE International Conference on Cluster Computing (2011)Google Scholar
  21. 21.
    William, A., Fayaz, K., Veerabhadra, B.: HSApriori: high speed association rule mining using apriori based algorithm for GPU. Int. J. Multidiscip. Curr. Res. 2, 759–763 (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • K. Bhargavi
    • 1
  • B. Sathish Babu
    • 2
  1. 1.Department of CSESiddaganga Institute of TechnologyTumkurIndia
  2. 2.Department of CSERV College of EngineeringBengaluruIndia

Personalised recommendations