Presentation of Modern Accident Reconstruction Procedures - Case Study

  • Gábor VidaEmail author
  • Istvan Bodollo
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Nowadays, the reconstruction of traffic accidents utilizing current vehicle technology presents new challenges for professional accident analysis. The downloading and reading of data stored in vehicles and the professional interpretation of these data is becoming important for full interpretation of the accident reconstruction. But this data cannot be interpreted without the use of separate mathematical analysis and comparison to the physical scene data for the analysis of traffic accidents.

In this paper, the process is discussed of an accident resulted by a Toyota Yaris passenger car’s stability loss of control that resulted in a traffic accident.

During the analysis, we will use data from the electronic EDR (Event Data Recorder) placed in the vehicle, as well as data recorded by in the auxiliary equipment (on-board camera).

In determining the most likely accident process, account should be taken of the data obtained from other accident related devices as well as the GIS data for the environment. The paper details how data from different sources can be evaluated, how conflicting data can be reconciled and, how to resolve contradictions.


Accident reconstruction Event Data Recorder Vehicle movement simulation On-board camera 

List of Abbreviations


Anti-lock Braking System


Event Data Recorder


Control Area Network


  1. 1.
    Gazdag, A., Buttyán, L., Szalay, Zs.: Efficient lossless compression of CAN traffic logs. In: Software, Telecommunications and Computer Networks (SoftCOM), Split. IEEE Explore Digital Library (2017)Google Scholar
  2. 2.
    Szalay, Zs., Lengyel, L., Ekler, P., Ujj, T., Charaf, H.: ICT in road vehicles — reliable vehicle sensor information from OBD versus CAN. In: 4th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Budapest, Hungary, pp. 469–476. ISBN 978-9-6331-3140-4; 978-963-313-142-8Google Scholar
  3. 3.
    Cassidy, C.: Data wrecks Lt. Gov. Tim Murray’s tale. Boston Herald, 4 January 2012Google Scholar
  4. 4.
    Sharp, D.: Autos’ black-box data turning up in courtrooms. USA Today, 15 May 2003Google Scholar
  5. 5.
    Pintér, K., Szalay, Zs., Vida, G.: Autonomous vehicles - novel types and causes of traffic accident, responsibility. In: Vehovszky, B., Bán, K., Takács, J. (eds.) 34th International Colloquium on Advanced Manufacturing and Repairing Technologies in Vehicle Industry, Visegrád, Hungary, pp. 187–190, 17–19 May 2017. ISBN 978-963-313-258-6Google Scholar
  6. 6.
    Pintér, K., Trencséni, B., Vida, G.: A közúti forgalmi változók és a baleseteket jellemző változók közötti összefüggések vizsgálata. In: Tamás, P. (eds.) Innováció és Fenntartható Felszíni Közlekedés Konferencia, Budapest, Hungary, 2–4 September 2010. ISBN 978-963-88875-1-1Google Scholar
  7. 7.
    BOSCH Homepage. Last accessed 20 Oct 2017
  8. 8.
    Darts Group Homepage. Last accessed 5 Jan 2018
  9. 9.
    Fourth CDR User Summit Europe, 23–24 June 2017Google Scholar
  10. 10.
    Handbuch Verkehrsunfallrekonstruktion: Unfallaufnahme, Fahrdynamik, Simulation (ATZ/MTZ-Fachbuch) Gebundene Ausgabe. von Heinz Burg (Herausgeber), Andreas Moser, 16 June 2009Google Scholar
  11. 11.
    Virtual Crash Homepage. Last accessed 12 Apr 2016

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Budapest University of Technology and EconomicsBudapestHungary
  2. 2.Novy SadSerbia

Personalised recommendations