Single-Gene Versus Multigene Transfer Approaches for Crop Salt Tolerance

  • Satpal Turan
Chapter

Abstract

Plants face many challenges during biotic and abiotic stresses during their lifetime. Salinity stress is the most typical abiotic stress and combines water stress and ionic stress. It affects plants in many aspects at the molecular, cellular, and morphological levels. In response and adaptation to salt stress, plant gene regulation is modulated at the transcriptional or post-transcriptional level. Efforts have been made to overcome salinity by traditional approaches such as breeding, priming, and modern techniques of genetic engineering. However, because salt tolerance depends on multigenic properties, it is hard to control this problem simply by a single gene transfer. Although the response and signaling mechanisms of plants under salt stress have not been completely elucidated, thorough understanding of the salt stress response in plants has enabled scientists to make transgenic plants showing salt tolerance, mostly by a single transfer but also by multigene transfer. In addition to a purely gene-based approach, epigenetics and noncoding RNA have been found to play roles in salt stress/tolerance in plants. This chapter provides a brief introduction to salt stress responses and strategies for salt tolerance in plants. Moreover, single-gene versus multigene transfer and/or regulation of salt tolerance in plants are described.

Keywords

Salinity stress Antioxidative enzymes Proline Heat shock proteins Ion homeostasis Transcription factor Salinity tolerance Transcriptional regulation Gene transfer Plant breeding Water use efficiency 

Abbreviations

ABA

Abscisic acid

APX

Ascorbate peroxidase

ATP

Adenosine triphosphate

BADH

Betaine aldehyde dehydrogenase

CDPK

Calcium-dependent protein kinase

CIPK

Calcineurin B–like protein interacting kinase

CRISPER

Clustered regularly interspaced short tandem repeats

ER

Endoplasmic reticulum

GORK

Guard cell outward-rectifying potassium channel

GST

Glutathione-S-transferase

Hsp31

Heat shock protein 31

IAA

Indole-3-acetic acid

MAPK

Mitogen-activated protein kinase

miRNA

MicroRNA

NSSC

Nonselective cation channel

NUE

Nitrogen use efficiency

PDH45

Pea DNA helicase 45

QTL

Quantitative trait locus

ROS

Reactive oxygen species

SAHA

Suberoylanilide hydroxamic acid

SALT

Salt stress-induced plant protein

sHSP

Small heat shock protein

siRNA

Small interfering RNA

SOD

Superoxide dismutase

SOS

Salt Overly Sensitive

TALEN

Transcription activator–like nuclease

WUE

Water use efficiency

ZFN

Zinc finger nuclease

References

  1. Abdula SE, Lee HJ, Ryu H, Kang KK, Nou I, Sorrells ME, Cho YG (2016) Over expression of BrCIPK1 gene enhances abiotic stress tolerance by increasing proline biosynthesis in rice. Plant MolBiol Rep 34:501CrossRefGoogle Scholar
  2. Adams E, Shin R (2014) Transport, signaling, and homeostasis of potassium and sodium in plants. J Integr Plant Biol 56:231–249CrossRefPubMedGoogle Scholar
  3. Agarwal P, Dabi M, Sapara KK, Joshi PS, Agarwal PK (2016) Ectopic expression of JcWRKY transcription factor confers salinity tolerance via salicylic acid signaling. Front Plant Sci 7:1541PubMedPubMedCentralGoogle Scholar
  4. Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813PubMedPubMedCentralGoogle Scholar
  5. Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40:326–345Google Scholar
  6. Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190CrossRefGoogle Scholar
  7. Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509CrossRefPubMedPubMedCentralGoogle Scholar
  8. Augustine SM, Ashwin Narayan J, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34:247–263Google Scholar
  9. Beebe S, Ramirez J, Jarvis A, Rao I, Mosquera G, Bueno G et al (2011) Genetic improvement of common beans and the challenges of climate change. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation of climate change., 1st edn. Wiley, New York, pp 356–369CrossRefGoogle Scholar
  10. Bekh-Ochir D, Shimada S, Yamagami A, Kanda S, Ogawa K, Nakazawa M, Matsui M, Sakuta M, Osada H, Asami T, Nakano T (2013) A novel mitochondrial DnaJ/Hsp40 family protein BIL2 promotes plant growth and resistance against environmental stress in brassinosteroid signaling. Planta 237:1509–1525CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ben Romdhane W, Ben-Saad R, Meynard D, Verdeil JL, Azaza J, Zouari N, Fki L, Guiderdoni E, Al-Doss A, Hassairi A (2017) Ectopic expression of Aeluropus littoralis plasma membrane protein gene AlTMP1 confers abiotic stress tolerance in transgenic tobacco by improving water status and cation homeostasis. Int J Mol Sci 18:pii: E692CrossRefGoogle Scholar
  12. Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr Opin Biotechnol 26:62–70CrossRefPubMedGoogle Scholar
  13. Chen J, Xiong DY, Wang WH, Hu WJ, Simon M, Xiao Q, Chen J, Liu TW, Liu X, Zheng HL (2013) Nitric oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+ antiporter under high salinity. PLoS One 8:e71543Google Scholar
  14. Chen X, Lu X, Shu N, Wang D, Wang S, Wang J, Guo L, Guo X, Fan W, Lin Z, Ye W (2017) GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS One 12:e0181450Google Scholar
  15. Cheng NH, Pittman JK, Zhu JK, Hirschi KD (2004) The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem 279:2922–2926CrossRefPubMedGoogle Scholar
  16. Cheong M, Yun D-J (2007) Salt-stress signaling. J Plant Biol 50:148–155Google Scholar
  17. Chowdhury S, Basu A, Kundu S (2017) Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Front Plant Sci 8:410PubMedPubMedCentralGoogle Scholar
  18. Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G (2013) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 8:e69881CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ding H, Lai J, Wu Q, Zhang S, Chen L, Dai YS, Wang C, Du J, Xiao S, Yang C (2016) Jasmonate complements the function of Arabidopsis lipoxygenase 3 in salinity stress response. Plant Sci 244:1–7CrossRefPubMedGoogle Scholar
  20. Dong W, Song Y, Zhao Z, Qiu NW, Liu X, Guo W (2017) The Medicago truncatula R2R3-MYB transcription factor gene MtMYBS1 enhances salinity tolerance when constitutively expressed in Arabidopsis thaliana. Biochem Biophys Res Commun 490:225–230CrossRefPubMedGoogle Scholar
  21. Fu C, Liu XX, Yang WW, Zhao CM, Liu J (2016) Enhanced salt tolerance in tomato plants constitutively expressing heat-shock protein in the endoplasmic reticulum. Genet Mol Res 15 https://doi.org/10.4238/gmr.15028301
  22. Garg B, Gill SS, Biswas DK, Sahoo RK, Kunchge NS, Tuteja R, Tuteja N (2017) Simultaneous expression of PDH45 with EPSPS gene improves salinity and herbicide tolerance in transgenic tobacco plants. Front Plant Sci 8:364PubMedPubMedCentralGoogle Scholar
  23. Gariga M, Raddatz N, Véry AA, Sentenac H, Rubio-Meléndez ME, González W, Dreyer I (2017) Cloning and functional characterization of HKT1 and AKT1 genes of Fragaria spp. Relationship to plant response to salt stress. J Plant Physiol 210:9–17CrossRefGoogle Scholar
  24. Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL (2014) A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. Plant J 80:93–105Google Scholar
  25. Grewal HS (2010) Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agric Water Manag 97:148–156CrossRefGoogle Scholar
  26. Gupta B, Haung B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. https://doi.org/10.1155/2014/701596
  27. Gupta BK, Sahoo KK, Ghosh A, Tripathi AK, Anwar K, Das P, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2017) Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant Cell Environ. https://doi.org/10.1111/pce.12968. [Epub ahead of print]
  28. Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179CrossRefPubMedGoogle Scholar
  29. Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shin DH, Lee IJ (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232CrossRefPubMedGoogle Scholar
  30. Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hichri I, Muhovski Y, Žižková E, Dobrev PI, Gharbi E, Franco-Zorrilla JM, Lopez-Vidriero I, Solano R, Clippe A, Errachid A, Motyka V, Lutts S (2017) The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato. Front Plant Sci 8:1343CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hossain MS, El Sayed AI, Moore M, Dietz KJ (2017) Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet. J Exp Bot 68:1283–1298CrossRefPubMedPubMedCentralGoogle Scholar
  33. Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15:268CrossRefPubMedPubMedCentralGoogle Scholar
  34. James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947CrossRefPubMedGoogle Scholar
  35. Jia H, Hao L, Guo X, Liu S, Yan Y, Guo X (2016) A Raf-like MAPKKK gene, GhRaf19, negatively regulates tolerance to drought and salt and positively regulates resistance to cold stress by modulating reactive oxygen species in cotton. Plant Sci 252:267–281CrossRefPubMedGoogle Scholar
  36. Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059CrossRefPubMedGoogle Scholar
  37. Kaur N, Kirat K, Saini S, Sharma I, Gantet P, Pati PK (2016) Reactive oxygen species generating system and brassinosteroids are linked to salt stress adaptation mechanisms in rice. Plant Signal Behav 11:e1247136CrossRefPubMedPubMedCentralGoogle Scholar
  38. Khan MN, Siddiqui MH, Mohammad F, Naeem M, Masroor M, Khan K (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. ActaPhysiol Plant 32:121–132Google Scholar
  39. Kissoudis C, Seifi A, Yan Z, Islam AT, van der Schoot H, van de Wiel CC, Visser RG, van der Linden CG, Bai Y (2017) Ethylene and abscisic acid signaling pathways differentially influence tomato resistance to combined powdery mildew and salt stress. Front Plant Sci 7:2009CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D, Li D (2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ 34:1291–1303CrossRefPubMedGoogle Scholar
  41. Kumar S, Beena AS, Awana M, Singh A (2017) Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting wheat (Triticum aestivum L.) genotypes. DNA Cell Biol 36:283–294CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lai SJ, Lai MC, Lee RJ, Chen YH, Yen HE (2014) Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress. Plant Mol Biol 85:429–441Google Scholar
  43. Lestari R, Rio M, Martin F, Leclercq J, Woraathasin N, Roques S, Dessailly F, Clément-Vidal A, Sanier C, Fabre D, Melliti S, Suharsono S, Montoro P (2018) Overexpression of Hevea brasiliensis ethylene response factor HbERF-IXc5 enhances growth, tolerance to abiotic stress and affects laticifer differentiation. Plant Biotechnol J 16:322–336Google Scholar
  44. Linh LH, Linh TH, Xuan TD, Ham LH, Ismail AM, Khanh TD (2012) Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the Red River Delta of Vietnam. Int J Plant Genom 2012:949038Google Scholar
  45. Liu Y, Sun J, Wu Y (2016) Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res 129:955–962CrossRefPubMedGoogle Scholar
  46. Liu Z, Liu P, Qi D, Peng X, Liu G (2017) Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S-adenosylmethionine decarboxylase gene from Leymus chinensis. J Plant Physiol 211:90–99CrossRefPubMedGoogle Scholar
  47. Luo X, Wu J, Li Y, Nan Z, Guo X, Wang Y, Zhang A, Wang Z, Xia G, Tian Y (2013) Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS One 8:e54002CrossRefPubMedPubMedCentralGoogle Scholar
  48. Masand S, Yadav SK (2016) Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep 43:53–64CrossRefPubMedGoogle Scholar
  49. Melvin P, Bankapalli K, D’Silva P, Shivaprasad PV (2017) Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants. Plant Mol Biol 94:381–397Google Scholar
  50. Mishra A, Tanna B (2017) Halophytes: potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefPubMedGoogle Scholar
  52. Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O et al (2003) NDP kinase 2 interacts with two oxidative stress activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci U S A 100:358–363CrossRefPubMedGoogle Scholar
  53. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663CrossRefPubMedGoogle Scholar
  54. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefPubMedGoogle Scholar
  55. Nguyen TX, Nguyen T, Alameldin H, Goheen B, Loescher W, Sticklen M (2013) Transgene pyramiding of the HVA1 and mtlD in T3 maize (Zea mays L.) plants confers drought and salt tolerance, along with an increase in crop biomass. Int J Agron. https://doi.org/10.1155/2013/598163
  56. Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7:e32124CrossRefPubMedPubMedCentralGoogle Scholar
  57. Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742CrossRefPubMedPubMedCentralGoogle Scholar
  58. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532CrossRefPubMedGoogle Scholar
  59. Pan WJ, Tao JJ, Cheng T, Shen M, Ma JB, Zhang WK, Lin Q, Ma B, Chen SY, Zhang JS (2017) Soybean NIMA-related kinase 1 promotes plant growth and improves salt and cold tolerance. Plant Cell Physiol 58:1268–1278Google Scholar
  60. Pandey G, Yadav CB, Sahu PP, Muthamilarasan M, Prasad M (2017) Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.) Plant Cell Rep 36:759–772CrossRefPubMedGoogle Scholar
  61. Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599CrossRefPubMedGoogle Scholar
  62. Park HJ, Kim WY, Yun DJ (2016) A new insight of salt stress signaling in plant. Mol Cells 39:447–459CrossRefPubMedPubMedCentralGoogle Scholar
  63. Patanun O, Ueda M, Itouga M, Kato Y, Utsumi Y, Matsui A, Tanaka M, Utsumi C, Sakakibara H, Yoshida M, Narangajavana J, Seki M (2017) The histone deacetylase inhibitor suberoylanilide hydroxamic acid alleviates salinity stress in cassava. Front Plant Sci 7:2039CrossRefPubMedPubMedCentralGoogle Scholar
  64. Peng J, Li Z, Wen X, Li W, Shi H, Yang L, Zhu H, Guo H (2014) Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet 10:e1004664CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pruthvi V, Narasimhan R, Nataraja KN (2014) Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.) PLoS One 9:e111152CrossRefPubMedPubMedCentralGoogle Scholar
  66. Puniran-Hartley N, Hartley J, Shabala L, Shabala S (2014) Salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance: in planta evidence for cross-tolerance. Plant Physiol Biochem 83:32–39CrossRefPubMedGoogle Scholar
  67. Quan R, Wang J, Yang D, Zhang H, Zhang Z, Huang R (2017) EIN3 and SOS2 synergistically modulate plant salt tolerance. Sci Rep 7:44637CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rahnama A, Poustini K, Munns R, James RA (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263CrossRefGoogle Scholar
  69. Reddy MP, Sanish S, Iyengar ERR (1992) Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions. Photosynthetica 26:173–179Google Scholar
  70. Reddy PS, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK et al (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem 94:104–113CrossRefPubMedGoogle Scholar
  71. Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56CrossRefPubMedGoogle Scholar
  72. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124CrossRefPubMedGoogle Scholar
  73. Rozema J, Flowers T (2008) Ecology. Crops for salinized world. Science 322:1470–1480CrossRefGoogle Scholar
  74. Sahoo RK, Ansari MW, Tuteja R, Tuteja N (2014) OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity. Rice (NY) 7:17Google Scholar
  75. Sakamoto A, Murata N (2000) Genetic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88CrossRefPubMedGoogle Scholar
  76. Sereflioglu S, Dinler BS, Tasci E (2017) Alpha-tocopherol-dependent salt tolerance is more related with auxin synthesis rather than enhancement antioxidant defense in soybean roots. Acta Biol Hung 68:115–125CrossRefPubMedGoogle Scholar
  77. Shabala S, Wu H, Bose J (2015) Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis. Plant Sci 241:109–119CrossRefPubMedGoogle Scholar
  78. Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26CrossRefPubMedGoogle Scholar
  79. Sharma A, Kumar D, Kumar S, Rampuria S, Reddy AR, Kirti PB (2016) Ectopic expression of an atypical hydrophobic group 5 LEA protein from wild peanut, Arachis diogoi, confers abiotic stress tolerance in tobacco. PLoS One 11:e0150609CrossRefPubMedPubMedCentralGoogle Scholar
  80. Shen J, Lv B, Luo L, He J, Mao C, Xi D, Ming F (2017) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7:40641CrossRefPubMedPubMedCentralGoogle Scholar
  81. Silva EN, Silveira JA, Rodrigues CR, Viégas RA (2015) Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis. Plant Biol (Stuttg) 17:1023–1029CrossRefGoogle Scholar
  82. Singh AK, Sopory SK, Wu K, Singla-Pareek SK (2010) Transgenic approaches. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, New York, pp 417–450Google Scholar
  83. Singh M, Kumar J, Singh VP, Prasad SM (2014) Plant tolerance mechanism against salt stress: the nutrient management approach. Biochem Pharmacol 3:e165Google Scholar
  84. Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A 100:14672–14677CrossRefPubMedPubMedCentralGoogle Scholar
  85. Su X, Chu Y, Li H, Hou Y, Zhang B, Huang Q, Hu Z, Huang R, Tian Y (2011) Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento'). PLoS One 6:e24614CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sun J, Dai S, Wang R, Chen S, Li N, Zhou X, Lu C, Shen X, Zheng X, Hu Z et al (2009) Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol 9:1175–1186CrossRefGoogle Scholar
  87. Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL et al (2010) Characterizing the saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160CrossRefGoogle Scholar
  88. Turan, S, Cornish K, Kumar S (2012) Salinity tolerance in plants: Breeding and genetic engineering. AJCS 6:1337–1348Google Scholar
  89. Turan S, Tripathy BC (2013) Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 250:209–222Google Scholar
  90. Unesco Water Portal (2007) http://www.unesco.org/water
  91. Varshney RK, Langridge P, Graner A (2007) Application of genomics to molecular breeding of wheat and barley. Adv Genet 58:121–155PubMedGoogle Scholar
  92. Veena Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395CrossRefGoogle Scholar
  93. Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161PubMedPubMedCentralGoogle Scholar
  94. Vivek PJ, Tuteja N, Soniya EV (2013) CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum. PLoS One 8:e76392CrossRefPubMedPubMedCentralGoogle Scholar
  95. Waditee R, Bhuiyan MN, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycine betaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci U S A 102:1318–1323CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wang RK, Li LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79:123–135CrossRefPubMedGoogle Scholar
  97. Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wen F-P, Zhang Z-H, Bai T, Xu Q, Pan Y-H (2010) Proteomics reveals the effects of gibberellic acid (GA3) on salt stressed rice (Oryza sativa L.) shoots. Plant Sci 178:170–175CrossRefGoogle Scholar
  99. Wu X, He J, Chen J, Yang S, Zha D (2013) Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress. Protoplasma 51:169–176Google Scholar
  100. Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X (2017) Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Front Plant Sci 8:1017CrossRefPubMedPubMedCentralGoogle Scholar
  101. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15:745–759CrossRefPubMedPubMedCentralGoogle Scholar
  102. Xu GY, Pedro SCFR, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234(1):47–59CrossRefPubMedGoogle Scholar
  103. Xu J, Xing XJ, Tian YS, Peng RH, Xue Y, Zhao W, Yao QH (2015a) Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS One 10:e0136960CrossRefPubMedPubMedCentralGoogle Scholar
  104. Xu R, Wang Y, Zheng H, Lu W, Wu C, Huang J, Yan K, Yang G, Zheng C (2015b) Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J Exp Bot 66:5997–6008CrossRefPubMedPubMedCentralGoogle Scholar
  105. Yadu S, Dewangan TL, Chandrakar V, Keshavkant S (2013) Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiol Mol Biol Plant 23:43–58Google Scholar
  106. Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31CrossRefPubMedGoogle Scholar
  107. Yang L, Zu Y-G, Tang Z-H (2013) Ethylene improves Arabidopsis salt tolerance via K+ in shoots and roots rather than decreasing tissue Na+ content. Environ Exp Bot 86:60–69CrossRefGoogle Scholar
  108. Yang G, Yu L, Zhang K, Zhao Y, Guo Y, Gao C (2017) A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and Thispida. Plant Physiol Biochem 113:187–197CrossRefPubMedGoogle Scholar
  109. Yu Y, Ni Z, Chen Q, Qu Y (2017) The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 491:642–648Google Scholar
  110. Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H (2015) Constitutive expression of rice microRNA 528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169:576–593CrossRefPubMedPubMedCentralGoogle Scholar
  111. Zhang X, Tang W, Liu J, Liu Y (2014) Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance. Chin J Appl Environ Biol 20:717–722Google Scholar
  112. Zhang X, Liu X, Wu L, Yu G, Wang X, Ma H (2015) The SsDREB transcription factor from the succulent halophyte Suaeda salsa enhances abiotic stress tolerance in transgenic tobacco. Int J Genomics 2015:875497PubMedPubMedCentralGoogle Scholar
  113. Zhang M, Smith JA, Harberd NP, Jiang C (2016a) The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Mol Biol 91:651–659CrossRefPubMedGoogle Scholar
  114. Zhang S, Gan Y, Xu B (2016b) Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci 7:1405PubMedPubMedCentralGoogle Scholar
  115. Zhou S, Chen X, Zhang X, Li Y (2008) Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett 30:369–376CrossRefPubMedGoogle Scholar
  116. Zhou C, Zhu L, Xie Y, Li F, Xiao X, Ma Z, Wang J (2017) Bacillus licheniformis SA03 Confers Increased Saline-Alakaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation. Front Plant Sci 8:1143Google Scholar
  117. Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948CrossRefPubMedPubMedCentralGoogle Scholar
  118. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71CrossRefPubMedGoogle Scholar
  119. Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou DX, Yang W, Zhao Y (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236:146–156Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Satpal Turan
    • 1
  1. 1.National Research Centre on Plant Biotechnology, IARI PUSANew DelhiIndia

Personalised recommendations