Advertisement

Brazilian Phlebotomines as Hosts and Vectors of Viruses, Bacteria, Fungi, Protozoa (Excluding Those Belonging to the Genus Leishmania) and Nematodes

  • Jeffrey J. Shaw
  • Amélia T. de Rosa
  • Ana Cecilia Cruz
  • Pedro Fernando da C. Vasconcelos
Chapter

Abstract

Many microorganisms—ranging from viruses, bacteria, entomophthoralic fungi, trypanosomatids and aseptate gregarines to Tylenchida and Spirurida nematodes (Warburg 1991)—have been isolated from American sand flies. Their importance as vectors of Leishmania species has eclipsed their role as vectors or hosts of other organisms except for Bartonellosis. In the case of trypanosomatids, studies on leishmaniasis have generated, directly or indirectly, most of the information that currently exists on these different parasites. In this chapter, we refer to findings of other monoaxenic parasites, including protozoa and bacteria, which can affect leishmanial vector efficiency. Eclectic feeding habits are responsible for epidemiological situations, in which viruses are transmitted between different vertebrates.

Notes

Acknowledgements

The authors are grateful to Dr. Robert Tesh and Thiago Vasconcelos for their helpful comments and input.

References

  1. Adler S, Mayrink W (1961) Sobre uma gregarina, Monocystis chagasi n. sp., de Phlebotomus longipalpis. Notas sobre as glândulas acessórias de P longipalpis. Rev Inst Med Trop Sao Paulo 3:230–238PubMedGoogle Scholar
  2. Adler S, Theodor O (1927) The transmission of Leishnma tropica from artificially infected sandflies to man. Ann Trop Med Parasitol 21:89–110CrossRefGoogle Scholar
  3. Aitken TH, Woodall JP, De Andrade AH, Bensabath G, Shope RE (1975) Pacui virus, phlebotomine flies, and small mammals in Brazil: an epidemiological study. Am J Trop Med Hyg 24:358–368CrossRefPubMedGoogle Scholar
  4. Anderson JR, Ayala SC (1968) Trypanosome transmitted by Phlebotomus: first report from the Americas. Science 161:1023–1025CrossRefPubMedGoogle Scholar
  5. Arias JR, Miles MA, Naiff RD, Povoa MM, de Freitas RA, Biancardi CB, Castellon EG (1985) Flagellate infections of Brazilian sand flies (Diptera: Psychodidae): isolation in vitro and biochemical identification of Endotrypanum and Leishmania. Am J Trop Med Hyg 34:1098–1108CrossRefPubMedGoogle Scholar
  6. Barbosa AF, Oliveira SM, Bertho AL, Franco AM, Rangel EF (2006) Single and concomitant experimental infections by Endotrypanum spp. and Leishmania (Viannia) guyanensis (Kinetoplastida: Trypanosomatidae) in the neotropical sand fly Lutzomyia longipalpis (Diptera: Psychodidae). Mem Inst Oswaldo Cruz 101:851–856CrossRefPubMedGoogle Scholar
  7. Brazil RP, Ryan L (1984) Nota sobre a infecção de Lutzomyia evandroi (Diptera: Psychodidae) por Ascocystis chagasi(Alder & Mayrink, 1961) no Estado do Maranhão. Mem Inst Oswaldo Cruz 79:375–376CrossRefPubMedGoogle Scholar
  8. Brooks MA (1964) Symbiotes and the nutrition of medically important insects. Bull World Health Organ 31:555–559PubMedPubMedCentralGoogle Scholar
  9. Brown AM, Adamson ML (2006) Phylogenetic distance of Thelohania butleri Johnston, Vernick, and Sprague, 1978 (Microsporidia; Thelohaniidae), a parasite of the smooth pink shrimp Pandalus jordani, from its congeners suggests need for major revision of the genus Thelohania Henneguy, 1892. J Eukaryot Microbiol 53:445–455CrossRefPubMedGoogle Scholar
  10. Camargo EP (1999) Phytomonas and other Trypanosomatids parasites of plants and fruits. Adv Parasitol 42:29–112CrossRefPubMedGoogle Scholar
  11. Canning EU (1977) New concepts of microsporida and their potential in biological control. In: Fallis AM (ed) Parasites their world and ours, proceedings of the 18th symposium of the Royal Society of Canada, Toronto, pp. 101–140Google Scholar
  12. Christensen HA, Herrer A (1975) Lutzomyia vespertilionis (Diptera: Psychodidae): potential vector of chiropteran trypanosomes in Panama. J Med Entomol 12:477–478CrossRefPubMedGoogle Scholar
  13. Christensen HA, Telford SR (1972) Trypanosoma thecadactyli sp. n. From forest geckoes in Panama, and its development in the sand fly Lutzomyia trinidadensis (Newstead) (Diptera, Psychodidae). J Protozool 19:403–406CrossRefPubMedGoogle Scholar
  14. Comer JA, Tesh RB (1991) Phlebotomine sand flies as vectors of vesiculoviruses: a review. Parassitologia 33:143–150PubMedGoogle Scholar
  15. de Souza AA, Dos Santos TV, Jennings YL, Ishikawa EA, Barata ID, Silva MD, Lima JA, Shaw J, Lainson R, Silveira FT (2016) Natural Leishmania (Viannia) spp. infections in phlebotomine sand flies (Diptera: Psychodidae) from the Brazilian Amazon region reveal new putative transmission cycles of American cutaneous leishmaniasis. Parasite 23:22CrossRefPubMedPubMedCentralGoogle Scholar
  16. de Souza AAA, da Rocha Barata I, das Gracas Soares Silva M, Lima JAN, Jennings YLL, Ishikawa EAY, Prevot G, Ginouves M, Silveira FT, Shaw J, Dos Santos TV (2017) Natural Leishmania (Viannia) infections of phlebotomines (Diptera: Psychodidae) indicate classical and alternative transmission cycles of American cutaneous leishmaniasis in the Guiana shield, Brazil. Parasite 24:13CrossRefPubMedPubMedCentralGoogle Scholar
  17. Deane LM (1964) Tripanosomídeos de mamíferos de região Amazônica. III. Hemoscopia e xenodiagnóstico de animais silvestres dos arredores de Belém, Pará. Rev Inst Med Trop Sao Paulo 6:25–232Google Scholar
  18. Espinosa OA, Serrano MG, Camargo EP, Teixeira MM, Shaw JJ (2016) An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology, ePub, 1–13.  https://doi.org/10.1017/S0031182016002092
  19. Ferreira RC, De Souza AA, Freitas RA, Campaner M, Takata CS, Barrett TV, Shaw JJ, Teixeira MM (2008) A phylogenetic lineage of closely related trypanosomes (Trypanosomatidae, Kinetoplastida) of anurans and sand flies (Psychodidae, Diptera) sharing the same ecotopes in Brazilian Amazonia. J Eukaryot Microbiol 55:427–435CrossRefPubMedGoogle Scholar
  20. Ferreira TS, Minuzzi-Souza TT, Andrade AJ, Coelho TO, Rocha Dde A, Obara MT, Hecht M, Nitz N, Gurgel-Goncalves R (2015) Molecular detection of Trypanosoma sp. and Blastocrithidia sp. (Trypanosomatidae) in phlebotomine sand flies (Psychodidae) in the Federal District of Brazil. Rev Soc Bras Med Trop 48:776–779CrossRefGoogle Scholar
  21. Franco AM, Momen H, Naiff RD, Moreira CF, Deane MP, Grimaldi G Jr (1996) Enzyme polymorphism in Endotrypanum and numerical analysis of isoenzyme data. Parasitology 113:39–48CrossRefPubMedGoogle Scholar
  22. Franco AM, Tesh RB, Guzman H, Deane MP, Grimaldi Junior G (1997) Development of Endotrypanum (Kinetoplastida: Trypanosomatidae) in experimentally infected phlebotomine sand flies (Diptera: Psychodidae). J Med Entomol 34:189–192CrossRefPubMedGoogle Scholar
  23. Freitas RA, Naiff RD, Barrett TV (2002) Species diversity and flagellate infections in the sand fly fauna near Porto Grande, State of Amapa, Brazil (Diptera: Psychodidae. Kinetoplastida: Trypanosomatidae). Mem Inst Oswaldo Cruz 97:53–59CrossRefPubMedGoogle Scholar
  24. Galati EA, Nunes VL, Boggiani PC, Dorval ME, Cristaldo G, Rocha HC, Oshiro ET, Damasceno-Junior GA (2006) Phlebotomines (Diptera: Psychodidae) in forested areas of the Serra da Bodoquena, state of Mato Grosso do Sul, Brazil. Mem Inst Oswaldo Cruz 101:175–193CrossRefPubMedGoogle Scholar
  25. Gebhardt LP, Stanton GJ, Hill DW, Collett GC (1964) Natural overwintering hosts of the virus of western equine encephalitis. N Engl J Med 271:172–177CrossRefPubMedGoogle Scholar
  26. Gil LH, Basano SA, Souza AA, Silva MG, Barata I, Ishikawa EA, Camargo LM, Shaw JJ (2003) Recent observations on the sand fly (Diptera: Psychodidae) fauna of the State of Rondonia, Western Amazonia, Brazil: the importance of Psychdopygus davisi as a vector of zoonotic cutaneous leishmaniasis. Mem Inst Oswaldo Cruz 98:751–755CrossRefPubMedGoogle Scholar
  27. Gorman BM (1979) Variation in orbiviruses. J Gen Virol 44:1–15CrossRefPubMedGoogle Scholar
  28. Gouveia C, Asensi MD, Zahner V, Rangel EF, Oliveira SM (2008) Study on the bacterial midgut microbiota associated to different Brazilian populations of Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae). Neotrop Entomol 37:597–601CrossRefPubMedGoogle Scholar
  29. Guerreiro SG, Travassos da Rosa APA, Vasconcelos PFC, Travassos da Rosa ES, Tesh RB, Travassos da Rosa JFS (1998) Characterization of two new phleboviruses associated with human illness from the Amazon region of Brazil. In: Travassos da Rosa APA, Vasconcelos PFC, Travassos da Rosa JFS (eds) An overview of arbovirology in Brazil and neighbouring countries. Evandro Chagas Institute, Belém, pp 100–105Google Scholar
  30. Hassan OA, Affognon H, Rocklov J, Mburu P, Sang R, Ahlm C, Evander M (2017) The one health approach to identify knowledge, attitudes and practices that affect community involvement in the control of Rift Valley fever outbreaks. PLoS Negl Trop Dis 11:e0005383CrossRefPubMedPubMedCentralGoogle Scholar
  31. Herrer A (1942) Trypanosoma phyllotis n.sp. e infecciones asociadas en uma titira, el Phlebotomus noguchi. Rev Peru Med Exp Salud Publica 1:40Google Scholar
  32. Hoare CA (1972) The trypanosomes of mammals. A zoological monograph. Blackwell Scientific Publications, Oxford, UK, p 749Google Scholar
  33. Hoch A, Ryan L, Vexenat JA, Rosa ACOC, Barretto AC (1986) Isolation of Leishmania braziliensis and other trypanosomatids from Phlebotomine in a mucocutaneous endemic area, Bahia, Brazil. Mem Inst Oswaldo Cruz 81:62CrossRefGoogle Scholar
  34. ICTV (2016) International Committee on Taxonomy of Viruses. https://talk.ictvonline.org/taxonomy/w/ictv-taxonomy
  35. Karabatsos N (1985) International catalogue of arboviruses including certain other viruses of vertebrates. In, 3rd edn. The American Society of Tropical Medicine and Hygiene. US Department of Health, Education and Welfare, San Antonio, p 1147Google Scholar
  36. Keller S, Petrini O (2005) Keys to the identification of the arthropod-pathogenic genera of the families Entomophthoraceae and Neozygitaceae (Zygomycetes), with description of three new subfamilies and a new genus. Sydowia 57:25–53Google Scholar
  37. Kelly PH, Bahr SM, Serafim TD, Ajami NJ, Petrosino JF, Meneses C, Kirby JR, Valenzuela JG, Kamhawi S, Wilson ME (2017) The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. MBio 8:e01121–e01116CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lainson R, Shaw JJ (1979) The role of animals in the epidemiology of south American Leishmaniasis. In: Lumsden WHR, Evans DA (eds) Biology of the Kinetoplastida. Academic Press, London/New York/San Francisco, pp 1–116Google Scholar
  39. Lainson R, Shaw JJ, Ward RD, Fraiha H (1973) Leishmaniasis in Brazil. IX. Considerations on the Leishmania braziliensis complex. importance of sandflies of the genus Psychodopygus (Mangabeira) in the transmission of L. braziliensis braziliensis in north Brazil. Trans R Soc Trop Med Hyg 67:184–196CrossRefGoogle Scholar
  40. Lainson R, Killick-Kendrick R, Canning EU, Shaw JJ, Ward RD, Leaney AJ, Nicholas JP (1977) Microsporidia of Brazilian sandflies. Trans Roy Soc Trop Med Hyg 71:381Google Scholar
  41. Lainson R, Shaw JJ, Povoa M (1981a) The importance of edentates (sloths and anteaters) as primary reservoirs of Leishmania braziliensis guyanensis, causative agent of "pianbois" in north Brazil. Trans R Soc Trop Med Hyg 75:611–612CrossRefPubMedGoogle Scholar
  42. Lainson R, Shaw JJ, Ready PD, Miles MA, Povoa M (1981b) Leishmaniasis in Brazil: XVI. Isolation and identification of Leishmania species from sandflies, wild mammals and man in north Para state, with particular reference to L. braziliensis guyanensis causative agent of "pian-bois". Trans R Soc Trop Med Hyg 75:530–536CrossRefPubMedGoogle Scholar
  43. Lewis DJ, Lainson R, Shaw JJ (1970) Determination of parous rates in Phlebotomine sandflies with special reference to Amazonian species. Bull Entomol Res 60:209–219CrossRefPubMedGoogle Scholar
  44. Matos E, Mendonca I, Azevedo C (2006) Vavraia lutzomyiae n. sp. (Phylum Microspora) infecting the sandfly Lutzomyia longipalpis (Psychodidae, Phlebotominae), a vector of human visceral leishmaniasis. Eur J Protistol 42:21–28CrossRefPubMedGoogle Scholar
  45. McCarthy CB, Diambra LA, Rivera Pomar RV (2011) Metagenomic analysis of taxa associated with Lutzomyia longipalpis, vector of visceral leishmaniasis, using an unbiased high-throughput approach. PLoS Negl Trop Dis 5:e1304CrossRefPubMedPubMedCentralGoogle Scholar
  46. Naiff RD, Barret TV, Freitas RA (1989) Isolation of Trypanosoma freitasi (Kinetoplasitda: Trypanosomatidae) from Psychodopygus claustrei (Diptera: Psychodidae). Mem Inst Oswaldo Cruz 84:273–275CrossRefPubMedGoogle Scholar
  47. Nunes-Neto JP, Souza WM, Acrani GO, Romeiro MF, Fumagalli M, Vieira LC, Medeiros DBA, Lima JA, Lima CPS, Cardoso JF, Figueiredo LTM, Silva SPD, Tesh R, Nunes MRT, Vasconcelos P (2017) Characterization of the Bujaru, frijoles and Tapara antigenic complexes into the sandfly fever group and two unclassified phleboviruses from Brazil. J Gen Virol 98:585–594CrossRefPubMedGoogle Scholar
  48. Oliveira SMP, Moraes CA, Gonçalves CM, Giordano-Dias JM, D’almeida MD, Asensi RP, Mello RP, Brazil RP (2000) Prevalence of microbiota in the digestive tract of wild females of Lutzomyia longipalpis Lutz & Neiva, 1912 (Diptera: Psychodidae). Rev Soc Bras Med Trop 33:319–322CrossRefPubMedGoogle Scholar
  49. Pacheco RS, Grimaldi G Jr, Morel CM (1987) Inhibition of growth of Leishmania mexicana by Leishmania mexicana amazonensis during "in vitro" co-cultivation. Mem Inst Oswaldo Cruz 82:537–542CrossRefPubMedGoogle Scholar
  50. Patton JL, da Silva MNF (1998) Rivers, refuges and ridges: The geography of speciation in Amazonian mammals. In: Berlocher S, Howard DJ, editors. Endless Forms: Species and Speciation. New York: Oxford University Press; p. 202–213.Google Scholar
  51. Pereira de Oliveira SM, de Morais BA, Goncalves CA, Giordano-Dias CM, Vilela ML, Brazil RP, D'Almeida JM, Asensi MD, Mello RP (2001) Digestive tract microbiota in female Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) from colonies feeding on blood meal and sucrose plus blood meal. Cad Saude Publica 17:229–232CrossRefGoogle Scholar
  52. Pessoa FA, Medeiros JF, Barrett TV (2007) Effects of timber harvest on phlebotomine sand flies (Diptera: Psychodidae) in a production forest: abundance of species on tree trunks and prevalence of trypanosomatids. Mem Inst Oswaldo Cruz 102:593–599CrossRefPubMedGoogle Scholar
  53. Peter CJ, Morgan JM (1981) Rift Valley fever. In: Steele JH (ed) Viral zoonosis. CRC Press, Boca Raton, pp 403–420Google Scholar
  54. Rogers WO, Burnheim PF, Wirth DF (1988) Detection of Leishmania within sand flies by kinetoplast DNA hybridization. Am J Trop Med Hyg 39:434–439CrossRefPubMedGoogle Scholar
  55. Ryan L, Lainson R, Shaw JJ (1987a) Leishmaniasis in Brazil. XXIV. Natural flagellate infections of sandflies (Diptera: Psychodidae) in Para state, with particular reference to the role of Psychodopygus wellcomei as the vector of Leishmania braziliensis in the Serra dos Carajas. Trans R Soc Trop Med Hyg 81:353–359CrossRefPubMedGoogle Scholar
  56. Ryan L, Lainson R, Shaw JJ, Braga RR, Ishikawa EA (1987b) Leishmaniasis in Brazil. XXV. Sandfly vectors of Leishmania in Pará State, Brazil. Med Vet Entomol 1:383–395CrossRefPubMedGoogle Scholar
  57. Sant'Anna MR, Darby AC, Brazil RP, Montoya-Lerma J, Dillon VM, Bates PA, Dillon RJ (2012) Investigation of the bacterial communities associated with females of Lutzomyia sand fly species from South America. PLoS One 7:e42531CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sant'Anna MR, Diaz-Albiter H, Aguiar-Martins K, Al Salem WS, Cavalcante RR, Dillon VM, Bates PA, Genta FA, Dillon RJ (2014) Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection. Parasit Vectors 7:329CrossRefPubMedPubMedCentralGoogle Scholar
  59. Scorza JV, Carnevali M (1981) Evidence for allocating Monocystis chagasi Adler & Mayrnk 1961 to the genus Ascocystis Grassé, 1953 (Gregarunia: Lecudinidae). In: Canning EU (ed) Parasitological topics a presentation volume to PCC Garnham FRS on the occasion of his 80th birthday. Society of Protozoologists Special Publication, Allen Press Inc, Lawrence, pp 229–231Google Scholar
  60. Shaw JJ (1964) A possible vector of Endotrypanum schaudinni of the Sloth, Choloepus hoffmanni, in Panama. Nature 201:417–418CrossRefPubMedGoogle Scholar
  61. Shaw JJ (1981) The behaviour of Endotrypanum schaudinni (Kinetoplastidae:Trypanosomatidae) in three species of laboratory-bred neotropical sandflies (Diptera:Psychodidae) and its influence on the classification of the genus Leishmania. In: Canning EU (ed) Parasitological topics a presentation volume to PCC Garnham FRS on the occasion of his 80th birthday. Society of Protozoologists Special Publication, Allen Press Inc, Lawrence, pp 232–241Google Scholar
  62. Shaw JJ (1992) Endotrypanum, a unique intraerythrocytic flagellate of new world tree sloths. An evolutionary link or an evolutionary backwater? Ciência e Cultura 44:107–116Google Scholar
  63. Shaw JJ, Lainson R (1972) Leishmaniasis in Brazil. VI. Observations on the seasonal variations of Lutzomyia flaviscutellata in different types of forest and its relationship to enzootic rodent leishmaniasis (Leishmania mexicana amazonensis). Trans R Soc Trop Med Hyg 66:709–717CrossRefPubMedGoogle Scholar
  64. Shaw JJ, Lainson R, Ryan L, Braga RR, McMahon-Pratt D, David JR (1987) Leishmaniasis in Brazil: XXIII. The identification of Leishmania braziliensis in wild-caught neotropical sandflies using monoclonal antibodies. Trans R Soc Trop Med Hyg 81:69–72CrossRefPubMedGoogle Scholar
  65. Sherlock I, Pessôa SB (1966) Leptomonas infectando naturalmente Phlebotomus em Salvador (Bahia, Brasil). Rev Lat Am Microbiol 8:47–50Google Scholar
  66. Shortt HE, Swaminath CS (1927) Monocystis mackiei n. sp. parasitic in Phlebotomus argentipes. Indian J Med Res 15:539–552Google Scholar
  67. Silva SP, Dilcher M, Weber F, Hufert FT, Weidmann M, Cardoso JF, Carvalho VL, Chiang JO, Martins LC, Lima CP, Da Silva DE, Vianez-Junior JL, Popov VL, Travassos da Rosa AP, Tesh RB, Vasconcelos PF, Nunes MR (2014) Genetic and biological characterization of selected Changuinola viruses (Reoviridae, Orbivirus) from Brazil. J Gen Virol 95:2251–2259CrossRefPubMedPubMedCentralGoogle Scholar
  68. Silveira FT, Souza AA, Lainson R, Shaw JJ, Braga RR, Ishikawa EE (1991) Cutaneous leishmaniasis in the Amazon region: natural infection of the sandfly Lutzomyia ubiquitalis (Psychodidae: Phlebotominae) by Leishmania (Viannia) lainsoni in Pará State, Brazil. Mem Inst Oswaldo Cruz 86:127–130CrossRefPubMedGoogle Scholar
  69. Souza AAA, Camargo LMA, Faria DL, Shaw JJ (1998) Resultados preliminares: Identificação de flebotomíneos em Montenegro – Rondônia (Amazônia Ocidental Brasileira). Rev Soc Bras Med Trop 31:74–75Google Scholar
  70. Sprague V, Becnel JJ, Hazard EI (1992) Taxonomy of phylum microspora. Crit Rev Microbiol 18:285–395CrossRefPubMedGoogle Scholar
  71. Teixeira MMG, Borghesan TC, Ferreira RC, Santos MA, Takata CSA, Campaner M, Nunes VLB, Milder RV, de Souza W, Camargo EP (2011) Phylogenetic validation of the genera Angomonas and Strigomonas of Trypanosomatids harboring bacterial Endosymbionts with the description of new species of Trypanosomatids and of Proteobacterial Symbionts. Protist 162:503–504CrossRefPubMedGoogle Scholar
  72. Tesh RB (1988) The genus Phlebovirus and its vectors. Annu Rev Entomol 33:169–181CrossRefPubMedGoogle Scholar
  73. Tesh RB, Chaniotis BN, Aronson MD, Johnson KM (1971) Natural host preferences of Panamanian sandflies as determined by precipitin test. Am J Trop Med Hyg 20:150–156CrossRefPubMedGoogle Scholar
  74. Travassos da Rosa AP, Tesh RB, Pinheiro FP, Travassos da Rosa JF, Peterson NE (1983) Characterization of eight new phlebotomus fever serogroup arboviruses (Bunyaviridae: Phlebovirus) from the Amazon region of Brazil. Am J Trop Med Hyg 32:1164–1171CrossRefPubMedGoogle Scholar
  75. Travassos da Rosa AP, Tesh RB, Pinheiro FP, Travassos da Rosa JF, Peralta PH, Knudson DL (1984) Characterization of the Changuinola serogroup viruses (Reoviridae: Orbivirus). Intervirology 21:38–49CrossRefPubMedGoogle Scholar
  76. Travassos da Rosa AP, Tesh RB, Travassos da Rosa JF, Herve JP, Main AJ Jr (1984a) Carajas and Maraba viruses, two new vesiculoviruses isolated from phlebotomine sand flies in Brazil. Am J Trop Med Hyg 33:999–1006CrossRefPubMedGoogle Scholar
  77. Travassos da Rosa JFS, Travassos da Rosa APA, Vasconcelos PFC, Pinheiro FP, Rodrigues SG, Travassos da Rosa ES, Dias LB, Cruz ACR (1998) Arboviruses isolated in the Evandro Chagas institute, including some described for the first time in the Brazilian Amazon region, their known hosts, and their pathology in man. In: Travassos da Rosa APA, Vasconcelos PFC, Travassos da Rosa JFS (eds) An overview of Arbovirology in Brazil and neighbouring countries. Evandro Chagas Institute, Belém, pp 19–31Google Scholar
  78. Vasconcelos PF, Travassos da Rosa AP, Rodrigues SG, Travassos da Rosa ES, Degallier N, Travassos da Rosa JF (2001) Inadequate management of natural ecosystem in the Brazilian Amazon region results in the emergence and reemergence of arboviruses. Cad Saude Publica 17(Suppl):155–164CrossRefPubMedGoogle Scholar
  79. Viola LB, Campaner M, Takata CS, Ferreira RC, Rodrigues AC, Freitas RA, Duarte MR, Grego KF, Barrett TV, Camargo EP, Teixeira MM (2008) Phylogeny of snake trypanosomes inferred by SSU rDNA sequences, their possible transmission by phlebotomines, and taxonomic appraisal by molecular, cross-infection and morphological analysis. Parasitology 135:595–605CrossRefPubMedGoogle Scholar
  80. Votypka J, Lantova L, Ghosh K, Braig H, Volf P (2009) Molecular characterization of gregarines from sand flies (Diptera: Psychodidae) and description of Psychodiella n. g. (Apicomplexa: Gregarinida). J Eukaryot Microbiol 56:583–588CrossRefPubMedGoogle Scholar
  81. Wallace FG, Hertig M (1968) Ultrastructural comparison of promastigote flagellates (Leptomonads) of wild-caught Panamanian Phlebotomus. J Parasitol 54:606–612CrossRefPubMedGoogle Scholar
  82. Warburg A (1991) Entomopathogens of phlebotomine sand flies: laboratory experiments and natural infections. J Invertebr Pathol 58:189–202CrossRefPubMedGoogle Scholar
  83. Ward RD, Killick-Kendrick R (1974) Field and laboratory observations on Psychodopygus lainsoni Fraiha & Ward and other sandflies (Diptera: Phlebotomidae) from the Transamazônica highway, Pará State, Brazil. Bull Entomol Res 64:213–221CrossRefGoogle Scholar
  84. WHO (1967) Arboviruses and human disease. Report of a WHO Scientific Group. World Health Organ Tech Rep Ser 369:1–84Google Scholar
  85. Williams P, Coelho MV (1978) Taxonomy and transmission of Leishmania. Adv Parasitol 16:1–42CrossRefPubMedGoogle Scholar
  86. Wilson AJ, Morgan ER, Booth M, Norman R, Perkins SE, Hauffe HC, Mideo N, Antonovics J, McCallum H, Fenton A (2017) What is a vector? Philos Trans R Soc Lond Ser B Biol Sci 372:20160087CrossRefGoogle Scholar
  87. Wu WK, Tesh RB (1989) Experimental infection of Old and New World phlebotomine sand flies (Diptera: Psychodidae) with Ascogregarina chagasi (Eugregarinorida: Lecudinidae). J Med Entomol 6:237–242.CrossRefPubMedGoogle Scholar
  88. Yuval B, Warburg A (1989) Susceptibility of adult phlebotomine sandflies (Diptera: Psychodidae) to Bacillus thuringiensis var. israeliensis. Ann Trop Med Parasitol 83:195–196CrossRefPubMedGoogle Scholar
  89. Zeledon R, Rosabal R (1969) Trypanosoma leonidasdeanei sp. n. in insectivorous bats of Costa Rica. Ann Trop Med Parasitol 63:221–223CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jeffrey J. Shaw
    • 1
  • Amélia T. de Rosa
    • 2
    • 3
  • Ana Cecilia Cruz
    • 3
  • Pedro Fernando da C. Vasconcelos
    • 3
  1. 1.Instituto de Ciências Biomédicas, Universidade de São PauloSão PauloBrazil
  2. 2.University of Texas Medical BranchGalvestonUSA
  3. 3.Instituto Evandro Chagas, Secretaria de Vigilância em SaúdeAnanindeuaBrazil

Personalised recommendations