Advertisement

Host Cell Proteases: Cathepsins

  • Klaudia Brix
Chapter

Abstract

Cathepsins are proteolytic enzymes with a broad spectrum of substrates. They are known to reside within endo-lysosomes where they acquire optimal conditions for proteolytic activity and substrate cleavage. However, cathepsins have been detected in locations other than the canonical compartments of the endocytotic pathway. They are often secreted from cells in either proteolytically inactive proform or as mature and active enzyme; this may happen in both physiological and pathological conditions. Moreover, cytosolic and nuclear forms of cathepsins have been described and are currently an emerging field of research aiming at understanding their functions in such unexpected cellular locations. This chapter summarizes the canonical pathways of biosynthesis and transport of cathepsins in healthy cells. We further describe how cathepsins can reach unexpected locations such as the extracellular space or the cytosol and the nuclear matrix. No matter where viruses and cathepsins encounter, several outcomes can be perceived. Thus, scenarios are discussed on how cathepsins may support virus entry into host cells, involve in viral fusion factor and polyprotein processing in different host cell compartments, or help in packaging of viral particles during maturation. It is of note to mention that this review is not meant to comprehensively cover the present literature on viruses encountering cathepsins but rather illustrates, on some representative examples, the possible roles of cathepsins in replication of viruses and in the course of disease.

Keywords

Aspartic cathepsins Cysteine cathepsins Serine cathepsins Nuclear cathepsins Trafficking Activity-based probes Green fluorescent protein Substrate cleavage Protease inhibition 

References

  1. Abrahamson M, Alvarez-Fernandez M, Nathanson CM. Cystatins. Biochem Soc Symp. 2003;70:179–99.CrossRefGoogle Scholar
  2. Aguda AH, Panwar P, Du X, Nguyen NT, Brayer GD, Brömme D. Structural basis of collagen fiber degradation by cathepsin K. Proc Natl Acad Sci U S A. 2014;111(49):17474–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aits S, Jäättelä M. Lysosomal cell death at a glance. J Cell Sci. 2013;126(Pt 9):1905–12.PubMedCrossRefGoogle Scholar
  4. Akkari L, Gocheva V, Quick ML, Kester JC, Spencer AK, Garfall AL, Bowman RL, Joyce JA. Combined deletion of cathepsin protease family members reveals compensatory mechanisms in cancer. Genes Dev. 2016;30(2):220–32.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alvarez-Fernandez M, Barrett AJ, Gerhartz B, Dando PM, Ni J, Abrahamson M. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J Biol Chem. 1999;274(27):19195–203.PubMedCrossRefGoogle Scholar
  6. Andrews NW. Regulated secretion of conventional lysosomes. Trends Cell Biol. 2000;10(8):316–21.PubMedCrossRefGoogle Scholar
  7. Arampatzidou M, Rehders M, Dauth S, Yu DMT, Tedelind S, Brix K. Imaging of protease functions—current guide to spotting cysteine cathepsins in classical and novel scenes of action in mammalian epithelial cells and tissues. Ital J Anat Embryol. 2011;116(1):1–19.PubMedPubMedCentralGoogle Scholar
  8. Arkona C, Wiederanders B. Expression, subcellular distribution and plasma membrane binding of cathepsin B and gelatinases in bone metastatic tissue. Biol Chem. 1996;377(11):695–702.PubMedPubMedCentralGoogle Scholar
  9. Baici A, Müntener K, Willimann A, Zwicky R. Regulation of human cathepsin B by alternative mRNA splicing: homeostasis, fatal errors and cell death. Biol Chem. 2006;387(8):1017–21.PubMedCrossRefGoogle Scholar
  10. Baici A, Novinec M, Lenarčič B. Kinetics of the interaction of peptidases with substrates and modifiers. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. 37–84.CrossRefGoogle Scholar
  11. Barrett AJ. The cystatins: a diverse superfamily of cysteine peptidase inhibitors. Biomed Biochim Acta. 1986;45(11–12):1363–74.PubMedPubMedCentralGoogle Scholar
  12. Barrett AJ. Bioinformatics of proteases in the MEROPS database. Curr Opin Drug Discov Dev. 2004;7(3):334–41.Google Scholar
  13. Baruch A, Jeffery DA, Bogyo M. Enzyme activity—it’s all about image. Trends Cell Biol. 2004;14(1):29–35.PubMedCrossRefGoogle Scholar
  14. Bauer S. Toll-like receptor 9 processing: the key event in Toll-like receptor 9 activation? Immunol Lett. 2013;149(1–2):85–7.PubMedCrossRefGoogle Scholar
  15. Becker BF, Jacob M, Leipert S, Salmon AH, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol. 2015;80(3):389–402.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Blais DR, Nasheri N, McKay CS, Legault MC, Pezacki JP. Activity-based protein profiling of host-virus interactions. Trends Biotechnol. 2012;30(2):89–99.PubMedCrossRefGoogle Scholar
  17. Blum G. Use of fluorescent imaging to investigate pathological protease activity. Curr Opin Drug Discov Dev. 2008;11(5):708–16.Google Scholar
  18. Blum G, Mullins SR, Keren K, Fonovic M, Jedeszko C, Rice MJ, Sloane BF, Bogyo M. Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol. 2005;1(4):203–9.PubMedCrossRefGoogle Scholar
  19. Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol. 2007;3(10):668–77.PubMedCrossRefGoogle Scholar
  20. Brix K, Jordans S. Watching proteases in action. Nat Chem Biol. 2005;1(4):186–7.PubMedCrossRefGoogle Scholar
  21. Brix K, Lemansky P, Herzog V. Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology. 1996;137(5):1963–74.PubMedCrossRefGoogle Scholar
  22. Brix K, Dunkhorst A, Mayer K, Jordans S. Cysteine cathepsins: cellular roadmap to different functions. Biochimie. 2008;90(2):194–207.PubMedCrossRefGoogle Scholar
  23. Brix K, Scott CJ, Heck MMS. Compartmentalisation of proteolysis. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. 85–125.CrossRefGoogle Scholar
  24. Brix K, McInnes J, Al-Hashimi A, Rehders M, Tamhane T, Haugen MH. Proteolysis mediated by cysteine cathepsins and legumain-recent advances and cell biological challenges. Protoplasma. 2015;252(3):755–74.PubMedCrossRefGoogle Scholar
  25. Bromme D. Cathepsin F. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004a. p. 1087–8.Google Scholar
  26. Bromme D. Cathepsin K. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004b. p. 1092–7.Google Scholar
  27. Brömme D, Li Z, Barnes M, Mehler E. Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry. 1999;38(8):2377–85.PubMedCrossRefGoogle Scholar
  28. Brömme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: commonalities and differences. Expert Opin Drug Discovery. 2016;11(5):457–72.CrossRefGoogle Scholar
  29. Brzin J, Kopitar M, Turk V, Machleidt W. Protein inhibitors of cysteine proteinases. I. Isolation and characterization of stefin, a cytosolic protein inhibitor of cysteine proteinases from human polymorphonuclear granulocytes. Hoppe Seylers Z Physiol Chem. 1983;364(11):1475–80.PubMedCrossRefGoogle Scholar
  30. Büth H, Wolters B, Hartwig B, Meier-Bornheim R, Veith H, Hansen M, Sommerhoff CP, Schaschke N, Machleidt W, Fusenig NE, Boukamp P, Brix K. HaCaT keratinocytes secrete lysosomal cysteine proteinases during migration. Eur J Cell Biol. 2004;83(11–12):781–95.PubMedCrossRefGoogle Scholar
  31. Cavallo-Medved D, Sloane BF. Cell-surface cathepsin B: understanding its functional significance. Curr Top Dev Biol. 2003;54:313–41.PubMedCrossRefGoogle Scholar
  32. Chen B, Platt MO. Multiplex zymography captures stage-specific activity profiles of cathepsins K, L, and S in human breast, lung, and cervical cancer. J Transl Med. 2011;9:109.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chen JM, Dando PM, Rawlings ND, Brown MA, Young NE, Stevens RA, Hewitt E, Watts C, Barrett AJ. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem. 1997;272:8090–8.PubMedCrossRefGoogle Scholar
  34. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364–72.PubMedCrossRefGoogle Scholar
  35. Collette J, Bocock JP, Ahn K, Chapman RL, Godbold G, Yeyeodu S, Erickson AH. Biosynthesis and alternate targeting of the lysosomal cysteine protease cathepsin L. Int Rev Cytol. 2004;241:1–51.PubMedCrossRefGoogle Scholar
  36. Conner GE. Cathepsin D. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 43–52.CrossRefGoogle Scholar
  37. Cooper JB. Aspartic proteinases in disease: a structural perspective. Curr Drug Targets. 2002;3(2):155–73.PubMedCrossRefGoogle Scholar
  38. Cury VF, Gomez RS, Costa JE, Friedman E, Boson W, De Marco L. A homozygous cathepsin C mutation associated with Haim-Munk syndrome. Br J Dermatol. 2005;152:353–6.PubMedCrossRefGoogle Scholar
  39. Dall E, Brandstetter H. Structure and function of legumain in health and disease. Biochimie. 2016;122:126–50.PubMedCrossRefGoogle Scholar
  40. Dalton JP, Brindley PJ. Cathepsin W. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. 2004. p. 1109–12.Google Scholar
  41. Danthi P, Guglielmi KM, Kirchner E, Mainou B, Stehle T, Dermody TS. From touchdown to transcription: the reovirus cell entry pathway. Curr Top Microbiol Immunol. 2010;343:91–119.PubMedPubMedCentralGoogle Scholar
  42. Davidson Y, Gibbons L, Pritchard A, Hardicre J, Wren J, Tian J, Shi J, Stopford C, Julien C, Thompson J, Payton A, Thaker U, Hayes AJ, Iwatsubo T, Pickering-Brown SM, Pendleton N, Horan MA, Burns A, Purandare N, Lendon CL, Neary D, Snowden JS, Mann DM. Genetic associations between cathepsin D exon 2 C-->T polymorphism and Alzheimer’s disease, and pathological correlations with genotype. J Neurol Neurosurg Psychiatry. 2006;77(4):515–7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–92.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Dean RT. Lysosomes and protein degradation. Ciba Found Symp. 1979;75:139–49.Google Scholar
  45. Diederich S, Moll M, Klenk HD, Maisner A. The Nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem. 2005;280(33):29899–903.PubMedCrossRefGoogle Scholar
  46. Diederich S, Sauerhering L, Weis M, Altmeppen H, Schaschke N, Reinheckel T, Erbar S, Maisner A. Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J Virol. 2012;86(7):3736–45.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dolnik O, Stevermann L, Kolesnikova L, Becker S. Marburg virus inclusions: a virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment. Eur J Cell Biol. 2015;94(7–9):323–31.PubMedCrossRefGoogle Scholar
  48. Driessen C, Bryant RA, Lennon-Dumenil AM, Villadangos JA, Bryant PW, Shi GP, Chapman HA, Ploegh HL. Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. J Cell Biol. 1999;147:775–90.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Edgington LE, Verdoes M, Bogyo M. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr Opin Chem Biol. 2011;15(6):798–805.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Erickson AH, Isidoro C, Mach L, Mort JS. Cathepsins: getting in shape for lysosomal proteolysis. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. 127–73.CrossRefGoogle Scholar
  51. Flütsch A, Grütter MG. Proteases in death pathways. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. 265–318.CrossRefGoogle Scholar
  52. Fonović M, Turk B. Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta. 2014;1840(8):2560–70.PubMedCrossRefGoogle Scholar
  53. Friedrichs B, Tepel C, Reinheckel T, Deussing J, von Figura K, Herzog V, Peters C, Saftig P, Brix K. Thyroid functions of mouse cathepsins B, K, and L. J Clin Invest. 2003;111(11):1733–45.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fritz H. Proteinase inhibitors in severe inflammatory processes (septic shock and experimental endotoxaemia): biochemical, pathophysiological and therapeutic aspects. Ciba Found Symp. 1979;75:351–79.Google Scholar
  55. Frizler M, Yampolsky IV, Baranov MS, Stirnberg M, Gütschow M. Chemical introduction of the green fluorescence: imaging of cysteine cathepsins by an irreversibly locked GFP fluorophore. Org Biomol Chem. 2013;11(35):5913–21.PubMedCrossRefGoogle Scholar
  56. Gansz M, Kern U, Peters C, Reinheckel T. Exploring systemic functions of lysosomal cysteine proteases: the perspective of genetically modified mouse models. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. 217–33.CrossRefGoogle Scholar
  57. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.PubMedCrossRefGoogle Scholar
  58. Gocheva V, Joyce JA. Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle. 2007;6(1):60–4.PubMedCrossRefGoogle Scholar
  59. Goulet B, Nepveu A. Complete and limited proteolysis in cell cycle progression. Cell Cycle. 2004;3(8):986–9.PubMedCrossRefGoogle Scholar
  60. Grabowska MM, Day ML. Soluble E-cadherin: more than a symptom of disease. Front Biosci (Landmark Ed). 2012;17:1948–64.CrossRefGoogle Scholar
  61. Greenbaum D, Baruch A, Hayrapetian L, Darula Z, Burlingame A, Medzihradszky KF, Bogyo M. Chemical approaches for functionally probing the proteome. Mol Cell Proteomics. 2002;1(1):60–8.PubMedCrossRefGoogle Scholar
  62. Grzywa R, Sieńczyk M. Phosphonic esters and their application of protease control. Curr Pharm Des. 2013;19(6):1154–78.PubMedCrossRefGoogle Scholar
  63. Hart TC, Hart PS, Bowden DW, Michalec MD, Callison SA, Walker SJ, Zhang Y, Firatli E. Mutations of the cathepsin C gene are responsible for Papillon-Lefevre syndrome. J Med Genet. 1999;36:881–7.PubMedPubMedCentralGoogle Scholar
  64. Hart PS, Zhang Y, Firatli E, Uygur C, Lotfazar M, Michalec MD, Marks JJ, Lu X, Coates BJ, Seow WK, MarshaIl R, Williams D, Reed JB, Wright JT, Hart TC. Identification of cathepsin C mutations in ethnically diverse Papillon-Lefevre syndrome patients. J Med Genet. 2000;37:927–32.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Virus. 2012;4(4):557–80.CrossRefGoogle Scholar
  66. Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Invest. 2001;108(6):779–84.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hou WS, Bromme D, Zhao Y, Mehler E, Dushey C, Weinstein H, Miranda CS, Fraga C, Greig F, Carey J, Rimoin DL, Desnick RJ, Gelb BD. Characterization of novel cathepsin K mutations in the pro and mature polypeptide regions causing pycnodysostosis. J Clin Invest. 1999;103:731–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hunt CL, Lennemann NJ, Maury W. Filovirus entry: a novelty in the viral fusion world. Virus. 2012;4(2):258–75.CrossRefGoogle Scholar
  69. Huntington JA. Shape-shifting serpins--advantages of a mobile mechanism. Trends Biochem Sci. 2006;31(8):427–35.PubMedCrossRefGoogle Scholar
  70. Hurley JH. ESCRTs are everywhere. EMBO J. 2015;34(19):2398–23407.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Jessani N, Humphrey M, McDonald WH, Niessen S, Masuda K, Gangadharan B, Yates JR 3rd, Mueller BM, Cravatt BF. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc Natl Acad Sci U S A. 2004;101(38):13756–61.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Johnson MR, Polymeropoulos MH, Vos HL, Ortiz de Luna RI, Francomano CA. A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis. Genome Res. 1996;6:1050–5.PubMedCrossRefGoogle Scholar
  73. Jordans S, Jenko-Kokalj S, Kuhl NM, Tedelind S, Sendt W, Bromme D, Turk D, Brix K. Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem. 2009;10:23.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Joyce JA, Hanahan D. Multiple roles for cysteine cathepsins in cancer. Cell Cycle. 2004;3(12):1516–619.PubMedCrossRefGoogle Scholar
  75. Kay J, Tatnell PJ. Cathepsin E. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 33–8.CrossRefGoogle Scholar
  76. Kirschke H. Cathepsin H. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004a. p. 1089–92.Google Scholar
  77. Kirschke H. Cathepsin L. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004b. p. 1097–102.Google Scholar
  78. Kirschke H. Cathepsin S. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004c. p. 1104–7.Google Scholar
  79. Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem. 1992;61:307–30.PubMedCrossRefGoogle Scholar
  80. Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525.PubMedCrossRefGoogle Scholar
  81. Krueger S, Kalinski T, Hundertmark T, Wex T, Kuster D, Peitz U, Ebert M, Nagler DK, Kellner U, Malfertheiner P, Naumann M, Rocken C, Roessner A. Up-regulation of cathepsin X in Helicobacter pylori gastritis and gastric cancer. J Pathol. 2005;207:32–42.PubMedCrossRefGoogle Scholar
  82. Lemansky P, Brix K, Herzog V. Subcellular distribution, secretion, and posttranslational modifications of clusterin in thyrocytes. Exp Cell Res. 1999;251(1):147–55.PubMedCrossRefGoogle Scholar
  83. Lenarcic B, Turk V. Thyroglobulin type-1 domains in equistatin inhibit both papain-like cysteine proteinases and cathepsin D. J Biol Chem. 1999;274(2):563–6.PubMedCrossRefGoogle Scholar
  84. Lenarcic B, Ritonja A, Strukelj B, Turk B, Turk V. Equistatin, a new inhibitor of cysteine proteinases from Actinia equina, is structurally related to thyroglobulin type-1 domain. J Biol Chem. 1997;272(21):13899–903.PubMedCrossRefGoogle Scholar
  85. Li Z, Hou WS, Escalante-Torres CR, Gelb BD, Bromme D. Collagenase activity of cathepsin K depends on complex formation with chondroitin sulfate. J Biol Chem. 2002;277(32):28669–76.PubMedCrossRefGoogle Scholar
  86. Li Z, Yasuda Y, Li W, Bogyo M, Katz N, Gordon RE, Fields GB, Brömme D. Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem. 2004;279(7):5470–9.PubMedCrossRefGoogle Scholar
  87. Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, Prebois C, Rochefort H, Vignon F. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett. 2006;237(2):167–79.PubMedCrossRefGoogle Scholar
  88. Linke M, Herzog V, Brix K. Trafficking of lysosomal cathepsin B-green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment. J Cell Sci. 2002a;115(Pt 24):4877–89.PubMedCrossRefGoogle Scholar
  89. Linke M, Jordans S, Mach L, Herzog V, Brix K. Thyroid stimulating hormone upregulates secretion of cathepsin B from thyroid epithelial cells. Biol Chem. 2002b;383(5):773–84.PubMedCrossRefGoogle Scholar
  90. Luke CJ, Pak SC, Askew YS, Naviglia TL, Askew DJ, Nobar SM, Vetica AC, Long OS, Watkins SC, Stolz DB, Barstead RJ, Moulder GL, Brömme D, Silverman GA. An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. Cell. 2007;130(6):1108–19.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Machleidt W, Borchart U, Fritz H, Brzin J, Ritonja A, Turk V. Protein inhibitors of cysteine proteinases. II. Primary structure of stefin, a cytosolic protein inhibitor of cysteine proteinases from human polymorphonuclear granulocytes. Hoppe Seylers Z Physiol Chem. 1983;364(11):1481–6.PubMedCrossRefGoogle Scholar
  92. Mason RW, Gal S, Gottesman MM. The identification of the major excreted protein (MEP) from a transformed mouse fibroblast cell line as a catalytically active precursor form of cathepsin L. Biochem J. 1987;248(2):449–54.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mayer K, Iolyeva ME, Meyer-Grahle U, Brix K. Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments. Biol Chem. 2008;389(8):1085–96.PubMedCrossRefGoogle Scholar
  94. Mehtani S, Gong Q, Panella J, Subbiah S, Peffley DM, Frankfater A. In vivo expression of an alternatively spliced human tumor message that encodes a truncated form of cathepsin B. Subcellular distribution of the truncated enzyme in COS cells. J Biol Chem. 1998;273(21):13236–44.PubMedCrossRefGoogle Scholar
  95. Menard R, Sulea T. Cathepsin X. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 1113–6.Google Scholar
  96. Meulendyke KA, Wurth MA, McCann RO, Dutch RE. Endocytosis plays a critical role in proteolytic processing of the Hendra virus fusion protein. J Virol. 2005;79(20):12643–9.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015;202:120–34.CrossRefGoogle Scholar
  98. Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–75.PubMedCrossRefGoogle Scholar
  99. Mort JS. Cathepsin B. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 1079–86.Google Scholar
  100. Mort JS, Buttle DJ. Cathepsin B. Int J Biochem Cell Biol. 1997;29(5):715–20.PubMedCrossRefGoogle Scholar
  101. Moyle G, Gazzard B. Current knowledge and future prospects for the use of HIV protease inhibitors. Drugs. 1996;51(5):701–12.PubMedCrossRefGoogle Scholar
  102. Müntener K, Zwicky R, Csucs G, Rohrer J, Baici A. Exon skipping of cathepsin B: mitochondrial targeting of a lysosomal peptidase provokes cell death. J Biol Chem. 2004;279(39):41012–7.PubMedCrossRefGoogle Scholar
  103. Naganawa Y, Itoh K, Shimmoto M, Kamei S, Takiguchi K, Doi H, Sakuraba H. Stable expression of protective protein/cathepsin A-green fluorescent protein fusion genes in a fibroblastic cell line from a galactosialidosis patient. Model system for revealing the intracellular transport of normal and mutated lysosomal enzymes. Biochem J. 1999;340(Pt 2):467–74.PubMedPubMedCentralGoogle Scholar
  104. Nielsen R, Courtoy PJ, Jacobsen C, Dom G, Lima WR, Jadot M, Willnow TE, Devuyst O, Christensen EI. Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells. Proc Natl Acad Sci U S A. 2007;104(13):5407–12.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Novinec M, Lenarčič B, Baici A. Clusterin is a specific stabilizer and liberator of extracellular cathepsin K. FEBS Lett. 2012;586(7):1062–6.PubMedCrossRefGoogle Scholar
  106. Obermajer N, Magister S, Kopitar AN, Tepes B, Ihan A, Kos J. Cathepsin X prevents an effective immune response against Helicobacter pylori infection. Eur J Cell Biol. 2009;88:461–71.PubMedCrossRefGoogle Scholar
  107. Ong PC, McGowan S, Pearce MC, Irving JA, Kan WT, Grigoryev SA, Turk B, Silverman GA, Brix K, Bottomley SP, Whisstock JC, Pike RN. DNA accelerates the inhibition of human cathepsin V by serpins. J Biol Chem. 2007;282(51):36980–6.PubMedCrossRefGoogle Scholar
  108. Pager CT, Dutch RE. Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J Virol. 2005;79(20):12714–20.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Pager CT, Craft WWJ, Patch J, Dutch RE. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology. 2006;346(2):251–7.PubMedCrossRefGoogle Scholar
  110. Peloille S, Esnard A, Dacheux JL, Guillou F, Gauthier F, Esnard F. Interactions between ovine cathepsin L, cystatin C and alpha 2-macroglobulin. Potential role in the genital tract. Eur J Biochem. 1997;244(1):140–6.PubMedCrossRefGoogle Scholar
  111. Platt MO, Evans D, Keegan PM, McNamara L, Parker IK, Roberts LM, Caulk AW, Gleason RLJ, Seifu D, Amogne W, Penny C. Low-cost method to monitor patient adherence to HIV antiretroviral therapy using multiplex Cathepsin zymography. Mol Biotechnol. 2016;58(1):56–64.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Pohlmann R, Boeker MW, von Figura K. The two mannose 6-phosphate receptors transport distinct complements of lysosomal proteins. J Biol Chem. 1995;270(45):27311–8.PubMedCrossRefGoogle Scholar
  113. Poller W, Willnow TE, Hilpert J, Herz J. Differential recognition of alpha 1-antitrypsin-elastase and alpha 1-antichymotrypsin-cathepsin G complexes by the low density lipoprotein receptor-related protein. J Biol Chem. 1995;270(6):2841–5.PubMedCrossRefGoogle Scholar
  114. Pshezhetsky AV. Lysosomal carboxypeptidase A. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 1923–9.Google Scholar
  115. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rawlings ND. Protease families, evolution and mechanism of action. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. 1–36.Google Scholar
  117. Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2016;44(D1):D343–50.PubMedCrossRefGoogle Scholar
  118. Rawn SM, Cross JC. The evolution, regulation, and function of placenta-specific genes. Annu Rev Cell Dev Biol. 2008;24:159–81.PubMedCrossRefGoogle Scholar
  119. Reiser J, Adair B, Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. J Clin Invest. 2010;120(10):3421–31.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Rivera LE, Colon K, Cantres-Rosario YM, Zenon FM, Melendez LM. Macrophage derived cystatin B/cathepsin B in HIV replication and neuropathogenesis. Curr HIV Res. 2014;12(2):111–20.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Rochefort H, Garcia M, Glondu M, Laurent V, Liaudet E, Rey JM, Roger P. Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 overview. Clin Chim Acta. 2000;291(2):157–70.PubMedCrossRefGoogle Scholar
  122. Rock KL, Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol Rev. 2005;207:166–83.PubMedCrossRefGoogle Scholar
  123. Rubin H. Systemic effects of cancer: role of multiple proteases and their toxic peptide products. Med Sci Monit. 2005;11(7):RA221–8.PubMedPubMedCentralGoogle Scholar
  124. Sadaghiani AM, Verhelst SH, Gocheva V, Hill K, Majerova E, Stinson S, Joyce JA, Bogyo M. Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases. Chem Biol. 2007;14(5):499–511.PubMedCrossRefGoogle Scholar
  125. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A. 1998;95(23):13453–8.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Salpeter SJ, Blum G. Ready, set, cleave: proteases in action. Chem Biol. 2013;20(2):137–8.PubMedCrossRefGoogle Scholar
  127. Salvesen GS. Cathepsin G. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 1524–6.Google Scholar
  128. Sanman LE, Bogyo M. Activity-based profiling of proteases. Annu Rev Biochem. 2014;83:249–73.PubMedCrossRefGoogle Scholar
  129. Scharf JG, Braulke T. The role of the IGF axis in hepatocarcinogenesis. Horm Metab Res. 2003;35(11–12):685–93.PubMedPubMedCentralGoogle Scholar
  130. Schaschke N, Assfalg-Machleidt I, Machleidt W, Moroder L. Substrate/propeptide-derived endo-epoxysuccinyl peptides as highly potent and selective cathepsin B inhibitors. FEBS Lett. 1998;421(1):80–2.PubMedCrossRefGoogle Scholar
  131. Schechter I, Berger A. On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Biophys Res Commun. 1968;32(5):898–902.PubMedCrossRefGoogle Scholar
  132. Schilling K, Körner A, Sehmisch S, Kreusch A, Kleint R, Benedix Y, Schlabrakowski A, Wiederanders B. Selectivity of propeptide-enzyme interaction in cathepsin L-like cysteine proteases. Biol Chem. 2009;390(2):167–74.PubMedCrossRefGoogle Scholar
  133. Siintola E, Partanen S, Strömme P, Haapanen A, Haltia M, Maehlen J, Lehesjoki AE, Tyynelä J. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006;129(Pt 6):1438–45.PubMedCrossRefGoogle Scholar
  134. Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O'Donnell E, Salvesen GS, Travis J, Whisstock JC. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem. 2001;276(36):33293–6.PubMedCrossRefGoogle Scholar
  135. Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 2013;100(3):605–14.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Sloane BF, Moin K, Krepela E, Rozhin J. Cathepsin B and its endogenous inhibitors: the role in tumor malignancy. Cancer Metastasis Rev. 1990;9(4):333–52.PubMedCrossRefGoogle Scholar
  137. Sloane BF, List K, Fingleton B, Matrisian L. Proteases in cancer—significance for invasion and metastasis. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. TBD.CrossRefGoogle Scholar
  138. Spiess E, Brüning A, Gack S, Ulbricht B, Spring H, Trefz G, Ebert W. Cathepsin B activity in human lung tumor cell lines: ultrastructural localization, pH sensitivity, and inhibitor status at the cellular level. J Histochem Cytochem. 1994;42(7):917–29.PubMedCrossRefGoogle Scholar
  139. Sun L, Liu S, Chen ZJ. SnapShot: pathways of antiviral innate immunity. Cell. 2010;140:436.  https://doi.org/10.1016/j.cell.2010.01.041.CrossRefPubMedPubMedCentralGoogle Scholar
  140. Tamhane T, Wolters BK, Illukkumbura R, Maelandsmo GM, Haugen MH, Brix K. Construction of a plasmid coding for green fluorescent protein tagged cathepsin L and data on expression in colorectal carcinoma cells. Data Brief. 2015;5:468–75.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Tamhane T, Lllukkumbura R, Lu S, Maelandsmo GM, Haugen MH, Brix K. Nuclear cathepsin L activity is required for cell cycle progression of colorectal carcinoma cells. Biochimie. 2016;122:208–18.PubMedCrossRefGoogle Scholar
  142. Tedelind S, Poliakova K, Valeta A, Hunegnaw R, Yemanaberhan EL, Heldin NE, Kurebayashi J, Weber E, Kopitar-Jerala N, Turk B, Bogyo M, Brix K. Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biol Chem. 2010;391(8):923–35.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Tepel C, Bromme D, Herzog V, Brix K. Cathepsin K in thyroid epithelial cells: sequence, localization and possible function in extracellular proteolysis of thyroglobulin. J Cell Sci. 2000;113(Pt 24):4487–98.PubMedPubMedCentralGoogle Scholar
  144. Tholen M, Hillebrand LE, Tholen S, Sedelmeier O, Arnold SJ, Reinheckel T. Out-of-frame start codons prevent translation of truncated nucleo-cytosolic cathepsin L in vivo. Nat Commun. 2014;5:4931.PubMedCrossRefGoogle Scholar
  145. Tolosa E, Li W, Yasuda Y, Wienhold W, Denzin LK, Lautwein A, Driessen C, Schnorrer P, Weber E, Stevanovic S, Kurek R, Melms A, Bromme D. Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J Clin Invest. 2003;112:517–26.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Tong TR. SARS coronavirus anti-infectives. Recent Pat Antiinfect Drug Discov. 2006;1(3):297–308.PubMedCrossRefGoogle Scholar
  147. Toomes C, James J, Wood AJ, Wu CL, McCormick D, Lench N, Hewitt C, Moynihan L, Roberts E, Woods CG, Markham A, Wong M, Widmer R, Ghaffar KA, Pemberton M, Hussein IR, Temtamy SA, Davies R, Read AP, Sloan P, Dixon MJ, Thakker NS. Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat Genet. 1999;23:421–4.PubMedCrossRefGoogle Scholar
  148. Travis J. Structure, function, and control of neutrophil proteinases. Am J Med. 1988;84(6A):37–42.PubMedCrossRefGoogle Scholar
  149. Turk V, Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285(2):213–9.PubMedCrossRefGoogle Scholar
  150. Turk B, Turk V. Lysosomes as “suicide bags” in cell death: myth or reality? J Biol Chem. 2009;284(33):21783–7.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Turk B, Turk D, Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta. 2000;1477(1–2):98–111.PubMedCrossRefGoogle Scholar
  152. Turk B, Turk D, Dolenc I, Turk V. Dipeptidyl-peptidase I. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 1192–6.Google Scholar
  153. Turk V, Stoka V, Turk D. Cystatins: biochemical and structural properties, and medical relevance. Front Biosci. 2008;(13):5406–20.CrossRefGoogle Scholar
  154. Velasco G, Lopez-Otin C. Cathepsin O. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 1102–3.Google Scholar
  155. Vogt C, Eickmann M, Diederich S, Moll M, Maisner A. Endocytosis of the Nipah virus glycoproteins. J Virol. 2005;79(6):3865–72.PubMedPubMedCentralCrossRefGoogle Scholar
  156. von Figura K. Molecular recognition and targeting of lysosomal proteins. Curr Opin Cell Biol. 1991;3(4):642–6.CrossRefGoogle Scholar
  157. Weber E, Barbulescu E, Medek R, Reinheckel T, Sameni M, Anbalagan A, Moin K, Sloane BF. Cathepsin B-deficient mice as source of monoclonal anti-cathepsin B antibodies. Biol Chem. 2015;396(3):277–81.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Weis M, Maisner A. Nipah virus fusion protein: importance of the cytoplasmic tail for endosomal trafficking and bioactivity. Eur J Cell Biol. 2015;94(7–9):316–22.PubMedCrossRefGoogle Scholar
  159. Weiss-Sadan T, Gotsman I, Blum G. Cysteine proteases in atherosclerosis. FEBS J. 2017.  https://doi.org/10.1111/febs.14043. (Epub ahead of print).
  160. Whisstock JC, Silverman GA, Bird PI, Bottomley SP, Kaiserman D, Luke CJ, Pak SC, Reichhart JM, Huntington JA. Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. J Biol Chem. 2010;285(32):24307–12.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Willnow TE, Moehring JM, Inocencio NM, Moehring TJ, Herz J. The low-density-lipoprotein receptor-related protein (LRP) is processed by furin in vivo and in vitro. Biochem J. 1996;313(Pt 1):71–6.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zeeuwen PL, Cheng T, Schalkwijk J. The biology of cystatin M/E and its cognate target proteases. J Invest Dermatol. 2009;129(6):1327–38.PubMedCrossRefGoogle Scholar
  163. Zhou XY, Morreau H, Rottier R, Davis D, Bonten E, Gillemans N, Wenger D, Grosveld FG, Doherty P, Suzuki K, Grosveld GC, D'Azzo A. Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with overexpressing erythroid precursor cells. Genes Dev. 1995;9:2623–34.PubMedCrossRefGoogle Scholar
  164. Zou F, Schmon M, Sienczyk M, Grzywa R, Palesch D, Boehm BO, Sun ZL, Watts C, Schirmbeck R, Burster T. Application of a novel highly sensitive activity-based probe for detection of cathepsin G. Anal Biochem. 2012;421(2):667–72.PubMedCrossRefGoogle Scholar
  165. Zwicky R, Müntener K, Csucs G, Goldring MB, Baici A. Exploring the role of 5′ alternative splicing and of the 3′-untranslated region of cathepsin B mRNA. Biol Chem. 2003;384(7):1007–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Life Sciences and ChemistryJacobs University BremenBremenGermany

Personalised recommendations