Advertisement

Attention, Salience, and Self-Awareness: The Role of Insula in Meditation

  • Jordi Manuello
  • Andrea Nani
  • Franco Cauda
Chapter

Abstract

The insular cortex is implied in a great variety of cognitive functions and, for this reason, is probably one of the most studied brain regions in neuroscience. A consistent and increasing number of evidence are defining the role of the insula in meditation, which in recent years has become a hot topic of research in psychology, neuroscience, and medicine. In this chapter we intend to illustrate how the insula is involved in meditation. To this aim, we discuss the well-known and pivotal role of this brain region in attention, salience, and self-awareness, which are key cognitive processes for meditation practice. In virtue of these important functions, the insular cortex proves itself to be a key component of the neural correlates of meditation.

Keywords

Insula Attention Self-awareness Salience Meditation 

References

  1. 1.
    Gogolla N. The insular cortex. Curr Biol. 2017;27:R580–r586.CrossRefPubMedGoogle Scholar
  2. 2.
    Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci. 2011;1225:72–82.CrossRefPubMedGoogle Scholar
  3. 3.
    Wiebking C, Duncan NW, Tiret B, Hayes DJ, Marjanska M, Doyon J, Bajbouj M, Northoff G. GABA in the insula—a predictor of the neural response to interoceptive awareness. NeuroImage. 2014;86:10–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Gasquoine PG. Contributions of the insula to cognition and emotion. Neuropsychol Rev. 2014;24:77–87.CrossRefPubMedGoogle Scholar
  5. 5.
    Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: a review. Pain. 2013;154(Suppl 1):S29–43.CrossRefPubMedGoogle Scholar
  6. 6.
    Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214:655–67.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Droutman V, Read SJ, Bechara A. Revisiting the role of the insula in addiction. Trends Cogn Sci. 2015;19:414–20.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Small DM. Taste representation in the human insula. Brain Struct Funct. 2010;214:551–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Bamiou DE, Musiek FE, Luxon LM. The insula (island of Reil) and its role in auditory processing. Literature review. Brain Res Brain Res Rev. 2003;42:143–54.CrossRefPubMedGoogle Scholar
  10. 10.
    Craig AD. Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos Trans R Soc Lond Ser B Biol Sci. 2009a;364:1933–42.CrossRefGoogle Scholar
  11. 11.
    Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A. Functional connectivity of the insula in the resting brain. NeuroImage. 2011;55:8–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Cauda F, Costa T, Torta DM, Sacco K, D’Agata F, Duca S, Geminiani G, Fox PT, Vercelli A. Meta-analytic clustering of the insular cortex: characterizing the meta-analytic connectivity of the insula when involved in active tasks. NeuroImage. 2012a;62:343–55.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Manuello J, Vercelli U, Nani A, Costa T, Cauda F. Mindfulness meditation and consciousness: an integrative neuroscientific perspective. Conscious Cogn. 2016;40:67–78.CrossRefPubMedGoogle Scholar
  14. 14.
    Kabat-Zinn J. Mindfulness-based interventions in context: past, present, and future. Clin Psychol Sci Pract. 2003;10:144–56.CrossRefGoogle Scholar
  15. 15.
    Awasthi B. Issues and perspectives in meditation research: in search for a definition. Front Psychol. 2012;3:613.PubMedGoogle Scholar
  16. 16.
    Siegel RD, Germer CK, Olendzki A. Mindfulness: what is it? Where did it come from? In: Didonna F, editor. Clinical handbook of mindfulness. New York: Springer; 2008.Google Scholar
  17. 17.
    Thera N. Heart of Buddhist meditation. Kandy: Buddhist Publication Society; 1962.Google Scholar
  18. 18.
    Hölzel BK, Lazar SW, Gard T, Schuman-Olivier Z, Vago DR, Ott U. How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspect Psychol Sci. 2011;6:22.CrossRefGoogle Scholar
  19. 19.
    James W. The principles of psychology. New York: Dover Publications; 1890.Google Scholar
  20. 20.
    Knudsen EI. Fundamental components of attention. Annu Rev Neurosci. 2007;30:57–78.CrossRefPubMedGoogle Scholar
  21. 21.
    Naghavi HR, Nyberg L. Common fronto-parietal activity in attention, memory, and consciousness: shared demands on integration? Conscious Cogn. 2005;14:390–425.CrossRefPubMedGoogle Scholar
  22. 22.
    Touroutoglou A, Hollenbeck M, Dickerson BC, Feldman Barrett L. Dissociable large-scale networks anchored in the right anterior insula subserve affective experience and attention. NeuroImage. 2012;60:1947–58.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Reitan RM. Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills. 1958;8:271–6.CrossRefGoogle Scholar
  24. 24.
    Veldhuizen MG, Small DM. Modality-specific neural effects of selective attention to taste and odor. Chem Senses. 2011;36:747–60.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Taylor PCJ, Rushworth MFS, Nobre AC. Choosing where to attend and the medial frontal cortex: an fMRI study. J Neurophysiol. 2008;100:1397–406.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bengson JJ, Kelley TA, Mangun GR. The neural correlates of volitional attention: a combined fMRI and ERP study. Hum Brain Mapp. 2015;36:2443–54.CrossRefPubMedGoogle Scholar
  27. 27.
    Boehme S, Miltner WH, Straube T. Neural correlates of self-focused attention in social anxiety. Soc Cogn Affect Neurosci. 2015;10:856–62.CrossRefPubMedGoogle Scholar
  28. 28.
    Odriozola P, Uddin LQ, Lynch CJ, Kochalka J, Chen T, Menon V. Insula response and connectivity during social and non-social attention in children with autism. Soc Cogn Affect Neurosci. 2016;11:433–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Lopez-Larson MP, King JB, Terry J, McGlade EC, Yurgelun-Todd D. Reduced insular volume in attention deficit hyperactivity disorder. Psychiatry Res. 2012;204:32–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Morin A. Levels of consciousness and self-awareness: a comparison and integration of various neurocognitive views. Conscious Cogn. 2006;15:358–71.CrossRefPubMedGoogle Scholar
  31. 31.
    Ham TE, Bonnelle V, Hellyer P, Jilka S, Robertson IH, Leech R, Sharp DJ. The neural basis of impaired self-awareness after traumatic brain injury. Brain. 2014;137:586–97.CrossRefPubMedGoogle Scholar
  32. 32.
    Craig AD. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci. 2009b;10:59–70.CrossRefPubMedGoogle Scholar
  33. 33.
    Cauda F, Torta DME, Sacco K, Geda E, D’Agata F, Costa T, Duca S, Geminiani G, Amanzio M. Shared “core” areas between the pain and other task-related networks. PLoS One. 2012b;7:e41929.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3:655–66.CrossRefGoogle Scholar
  35. 35.
    Farb NAS, Segal ZV, Anderson AK. Mindfulness meditation training alters cortical representations of interoceptive attention. Soc Cogn Affect Neurosci. 2013;8:15–26.CrossRefPubMedGoogle Scholar
  36. 36.
    Cauda F, Torta DE, Sacco K, D’Agata F, Geda E, Duca S, Geminiani G, Vercelli A. Functional anatomy of cortical areas characterized by Von Economo neurons. Brain Struct Funct. 2013;218:1–20.CrossRefPubMedGoogle Scholar
  37. 37.
    Flynn FG. Anatomy of the insula functional and clinical correlates. Aphasiology. 1999;13:55–78.CrossRefGoogle Scholar
  38. 38.
    Ernst J, Boker H, Hattenschwiler J, Schupbach D, Northoff G, Seifritz E, Grimm S. The association of interoceptive awareness and alexithymia with neurotransmitter concentrations in insula and anterior cingulate. Soc Cogn Affect Neurosci. 2014;9:857–63.CrossRefGoogle Scholar
  39. 39.
    Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci. 2015;16:55–61.CrossRefPubMedGoogle Scholar
  40. 40.
    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Litt A, Plassmann H, Shiv B, Rangel A. Dissociating valuation and saliency signals during decision-making. Cereb Cortex. 2011;21:95–102.CrossRefPubMedGoogle Scholar
  42. 42.
    Palaniyappan L, Liddle PF. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. J Psychiatry Neurosci. 2012;37:17–27.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chen MC, Chang C, Glover GH, Gotlib IH. Increased insula coactivation with salience networks in insomnia. Biol Psychol. 2014;97:1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hairston IS, Talbot LS, Eidelman P, Gruber J, Harvey AG. Sensory gating in primary insomnia. Eur J Neurosci. 2010;31:2112–21.CrossRefPubMedGoogle Scholar
  45. 45.
    Hendrick OM, Luo X, Zhang S, Li CS. Saliency processing and obesity: a preliminary imaging study of the stop signal task. Obesity (Silver Spring). 2012;20:1796–802.CrossRefGoogle Scholar
  46. 46.
    Zhang JT, Yao YW, Li CS, Zang YF, Shen ZJ, Liu L, Wang LJ, Liu B, Fang XY. Altered resting-state functional connectivity of the insula in young adults with Internet gaming disorder. Addict Biol. 2016;21:743–51.CrossRefPubMedGoogle Scholar
  47. 47.
    Janes AC, Farmer S, Peechatka AL, Frederick Bde B, Lukas SE. Insula-dorsal anterior cingulate cortex coupling is associated with enhanced brain reactivity to smoking cues. Neuropsychopharmacology. 2015;40:1561–8.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.CrossRefGoogle Scholar
  49. 49.
    Sterzer P, Kleinschmidt A. Anterior insula activations in perceptual paradigms: often observed but barely understood. Brain Struct Funct. 2010;214:611–22.CrossRefPubMedGoogle Scholar
  50. 50.
    Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A. 2008;105:12569–74.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tsai MH, Chou WL. Attentional orienting and executive control are affected by different types of meditation practice. Conscious Cogn. 2016;46:110–26.CrossRefPubMedGoogle Scholar
  52. 52.
    Jo HG, Schmidt S, Inacker E, Markowiak M, Hinterberger T. Meditation and attention: a controlled study on long-term meditators in behavioral performance and event-related potentials of attentional control. Int J Psychophysiol. 2016;99:33–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Farb N, Mehling WE. Editorial: interoception, contemplative practice, and health. Front Psychol. 2016;7:1898.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Daubenmier J, Sze J, Kerr CE, Kemeny ME, Mehling W. Follow your breath: respiratory interoceptive accuracy in experienced meditators. Psychophysiology. 2013;50:777–89.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Mirams L, Poliakoff E, Brown RJ, Lloyd DM. Brief body-scan meditation practice improves somatosensory perceptual decision making. Conscious Cogn. 2013;22:348–59.CrossRefPubMedGoogle Scholar
  56. 56.
    Fox KC, Dixon ML, Nijeboer S, Girn M, Floman JL, Lifshitz M, Ellamil M, Sedlmeier P, Christoff K. Functional neuroanatomy of meditation: a review and meta-analysis of 78 functional neuroimaging investigations. Neurosci Biobehav Rev. 2016;65:208–28.CrossRefPubMedGoogle Scholar
  57. 57.
    Lazar SW, Kerr CE, Wasserman RH, Gray JR, Greve DN, Treadway MT, McGarvey M, Quinn BT, Dusek JA, Benson H, et al. Meditation experience is associated with increased cortical thickness. Neuroreport. 2005;16:1893–7.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Holzel BK, Ott U, Gard T, Hempel H, Weygandt M, Morgen K, Vaitl D. Investigation of mindfulness meditation practitioners with voxel-based morphometry. Soc Cogn Affect Neurosci. 2008;3:55–61.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Luders E, Kurth F, Mayer EA, Toga AW, Narr KL, Gaser C. The unique brain anatomy of meditation practitioners: alterations in cortical gyrification. Front Hum Neurosci. 2012;6:34.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Santarnecchi E, D'Arista S, Egiziano E, Gardi C, Petrosino R, Vatti G, Reda M, Rossi A. Interaction between neuroanatomical and psychological changes after mindfulness-based training. PLoS One. 2014;9:e108359.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Fox KC, Nijeboer S, Dixon ML, Floman JL, Ellamil M, Rumak SP, Sedlmeier P, Christoff K. Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neurosci Biobehav Rev. 2014;43:48–73.CrossRefPubMedGoogle Scholar
  62. 62.
    Sato JR, Kozasa EH, Russell TA, Radvany J, Mello LE, Lacerda SS, Amaro E Jr. Brain imaging analysis can identify participants under regular mental training. PLoS One. 2012;7:e39832.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Laneri D, Schuster V, Dietsche B, Jansen A, Ott U, Sommer J. Effects of long-term mindfulness meditation on brain’s white matter microstructure and its aging. Front Aging Neurosci. 2015;7:254.PubMedGoogle Scholar
  64. 64.
    Tomasino B, Fabbro F. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after 8 weeks of focused attention based mindfulness meditation. Brain Cogn. 2016;102:46–54.CrossRefPubMedGoogle Scholar
  65. 65.
    Tang YY, Tang Y, Tang R, Lewis-Peacock JA. Brief mental training reorganizes large-scale brain networks. Front Syst Neurosci. 2017;11:6.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tang YY, Ma Y, Fan Y, Feng H, Wang J, Feng S, Lu Q, Hu B, Lin Y, Li J, et al. Central and autonomic nervous system interaction is altered by short-term meditation. Proc Natl Acad Sci U S A. 2009;106:8865–70.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mascaro JS, Rilling JK, Negi LT, Raison CL. Pre-existing brain function predicts subsequent practice of mindfulness and compassion meditation. NeuroImage. 2013;69:35–42.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GCS fMRIKoelliker Hospital and University of TurinTurinItaly
  2. 2.FOCUS Lab, Department of PsychologyUniversity of TurinTurinItaly
  3. 3.Neuroscience Institute of TurinTurinItaly

Personalised recommendations