Role of the Insular Cortex in Emotional Awareness

  • Fareed Jumah


New studies keep drawing attention to the role of the insular cortex in emotional awareness. Emotional awareness is necessary to achieve and maintain mental health and social well-being. This chapter discusses the existing theories on emotional awareness and its correlation with interoception, the sense of the inner body. Emotional awareness and interoception have been shown to be two inseparable concepts. Several brain regions are involved in orchestrating the neural circuitry of emotional awareness (e.g., anterior cingulate cortex, amygdala); however, the insular cortex is the maestro. Furthermore, although anterior insular cortex and anterior cingulate cortex are coactivated, studies have shown they are potentially functionally separable. Insular lesions may cause impairments in emotional awareness, known as alexithymia.


Insular cortex Insula Emotional awareness Interoception Alexithymia 


  1. 1.
    Dolan RJ. Emotion, cognition, and behavior. Science. 2002;298(5596):1191–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Lane RD, Schwartz GE. Levels of emotional awareness: a cognitive-developmental theory and its application to psychopathology. Am J Psychiatry. 1987;144(2):133–43.PubMedCrossRefGoogle Scholar
  3. 3.
    Gu X, Hof PR, Friston KJ, Fan J. Anterior insular cortex and emotional awareness. J Comp Neurol. 2013;521(15):3371–88.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Pessoa L. To what extent are emotional visual stimuli processed without attention and awareness? Curr Opin Neurobiol. 2005;15(2):188–96.PubMedCrossRefGoogle Scholar
  5. 5.
    Craig AD. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10(1):59–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Ohman A, Soares JJ. “Unconscious anxiety”: phobic responses to masked stimuli. J Abnorm Psychol. 1994;103(2):231–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Sherrington CS. The integrative action of the nervous system. New Haven: Yale University Press; 1906.Google Scholar
  8. 8.
    Cameron OG. Interoception: the inside story—a model for psychosomatic processes. Psychosom Med. 2001;63(5):697–710.PubMedCrossRefGoogle Scholar
  9. 9.
    Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Craig AD. Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol. 2003;13(4):500–5.PubMedCrossRefGoogle Scholar
  11. 11.
    James W. What is an emotion? Mind. 1884;19:188–205.CrossRefGoogle Scholar
  12. 12.
    Carl Lange G. The emotions: a psychophysiological study. Baltimore: William and Wilkins; 1885/1992.Google Scholar
  13. 13.
    Bard P. A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiol. 1928;84:490–515.Google Scholar
  14. 14.
    Cannon WB. The wisdom of the body. New York: W.W. Norton and Co.; 1932.Google Scholar
  15. 15.
    Laird JD. Self-attribution of emotion: the effects of expressive behavior on the quality of emotional experience. J Pers Soc Psychol. 1974;29(4):475–86.PubMedCrossRefGoogle Scholar
  16. 16.
    Bem DJ. Self-perception: an alternative interpretation of cognitive dissonance phenomena. Psychol Rev. 1967;74(3):183–200.PubMedCrossRefGoogle Scholar
  17. 17.
    Harrison NA, Gray MA, Gianaros PJ, Critchley HD. The embodiment of emotional feelings in the brain. J Neurosci. 2010;30(38):12878–84.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Niedenthal PM. Embodying emotion. Science. 2007;316(5827):1002–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Oosterwijk S, Lindquist KA, Anderson E, Dautoff R, Moriguchi Y, Barrett LF. States of mind: emotions, body feelings, and thoughts share distributed neural networks. NeuroImage. 2012;62(3):2110–28.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Pollatos O, Fustos J, Critchley HD. On the generalised embodiment of pain: how interoceptive sensitivity modulates cutaneous pain perception. Pain. 2012;153(8):1680–6.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Gray MA, Beacher FD, Minati L, Nagai Y, Kemp AH, Harrison NA, et al. Emotional appraisal is influenced by cardiac afferent information. Emotion. 2012;12(1):180–91.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Thompson E, Varela FJ. Radical embodiment: neural dynamics and consciousness. Trends Cogn Sci. 2001;5(10):418–25.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Damasio AR. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond Ser B Biol Sci. 1996;351(1346):1413–20.CrossRefGoogle Scholar
  24. 24.
    Seth AK, Suzuki K, Critchley HD. An interoceptive predictive coding model of conscious presence. Front Psychol. 2011;2:395.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Craig AD. The sentient self. Brain Struct Funct. 2010;214(5–6):563–77.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci. 2011;1225:72–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Jones CL, Ward J, Critchley HD. The neuropsychological impact of insular cortex lesions. J Neurol Neurosurg Psychiatry. 2010;81(6):611–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Singer T, Critchley HD, Preuschoff K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci. 2009;13(8):334–40.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Critchley HD. The human cortex responds to an interoceptive challenge. Proc Natl Acad Sci U S A. 2004;101(17):6333–4.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–95.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Denny BT, Kober H, Wager TD, Ochsner KN. A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. J Cogn Neurosci. 2012;24(8):1742–52.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fan J, Gu X, Liu X, Guise KG, Park Y, Martin L, et al. Involvement of the anterior cingulate and frontoinsular cortices in rapid processing of salient facial emotional information. NeuroImage. 2011;54(3):2539–46.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Lindquist KA, Wager TD, Kober H, Bliss-Moreau E, Barrett LF. The brain basis of emotion: a meta-analytic review. Behav Brain Sci. 2012;35(3):121–43.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Medford N, Critchley HD. Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Struct Funct. 2010;214(5–6):535–49.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry. 2007;164(10):1476–88.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gu X, Liu X, Van Dam NT, Hof PR, Fan J. Cognition-emotion integration in the anterior insular cortex. Cereb Cortex. 2013;23(1):20–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Damasio A, Damasio H, Tranel D. Persistence of feelings and sentience after bilateral damage of the insula. Cereb Cortex. 2013;23(4):833–46.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci. 2000;3(10):1049–56.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Keysers C, Wicker B, Gazzola V, Anton JL, Fogassi L, Gallese V. A touching sight: SII/PV activation during the observation and experience of touch. Neuron. 2004;42(2):335–46.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Lindgren L, Westling G, Brulin C, Lehtipalo S, Andersson M, Nyberg L. Pleasant human touch is represented in pregenual anterior cingulate cortex. NeuroImage. 2012;59(4):3427–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Treede RD, Kenshalo DR, Gracely RH, Jones AK. The cortical representation of pain. Pain. 1999;79(2–3):105–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004;303(5661):1162–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Henderson LA, Macey PM, Macey KE, Frysinger RC, Woo MA, Harper RK, et al. Brain responses associated with the Valsalva maneuver revealed by functional magnetic resonance imaging. J Neurophysiol. 2002;88(6):3477–86.PubMedCrossRefGoogle Scholar
  44. 44.
    King AB, Menon RS, Hachinski V, Cechetto DF. Human forebrain activation by visceral stimuli. J Comp Neurol. 1999;413(4):572–82.PubMedCrossRefGoogle Scholar
  45. 45.
    Banzett RB, Mulnier HE, Murphy K, Rosen SD, Wise RJ, Adams L. Breathlessness in humans activates insular cortex. Neuroreport. 2000;11(10):2117–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Craig AD, Chen K, Bandy D, Reiman EM. Thermosensory activation of insular cortex. Nat Neurosci. 2000;3(2):184–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Calder AJ, Beaver JD, Davis MH, van Ditzhuijzen J, Keane J, Lawrence AD. Disgust sensitivity predicts the insula and pallidal response to pictures of disgusting foods. Eur J Neurosci. 2007;25(11):3422–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Phillips ML, Young AW, Senior C, Brammer M, Andrew C, Calder AJ, et al. A specific neural substrate for perceiving facial expressions of disgust. Nature. 1997;389(6650):495–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Wicker B, Keysers C, Plailly J, Royet JP, Gallese V, Rizzolatti G. Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron. 2003;40(3):655–64.PubMedCrossRefGoogle Scholar
  50. 50.
    Zaki J, Davis JI, Ochsner KN. Overlapping activity in anterior insula during interoception and emotional experience. NeuroImage. 2012;62(1):493–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Davidson RJ, Irwin W. The functional neuroanatomy of emotion and affective style. Trends Cogn Sci. 1999;3(1):11–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Eckert MA, Menon V, Walczak A, Ahlstrom J, Denslow S, Horwitz A, et al. At the heart of the ventral attention system: the right anterior insula. Hum Brain Mapp. 2009;30(8):2530–41.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5–6):655–67.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ebisch SJ, Ferri F, Salone A, Perrucci MG, D'Amico L, Ferro FM, et al. Differential involvement of somatosensory and interoceptive cortices during the observation of affective touch. J Cogn Neurosci. 2011;23(7):1808–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Gu X, Gao Z, Wang X, Liu X, Knight RT, Hof PR, et al. Anterior insular cortex is necessary for empathetic pain perception. Brain. 2012;135(Pt 9):2726–35.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Gu X, Han S. Attention and reality constraints on the neural processes of empathy for pain. NeuroImage. 2007;36(1):256–67.PubMedCrossRefGoogle Scholar
  57. 57.
    Gu X, Liu X, Guise KG, Naidich TP, Hof PR, Fan J. Functional dissociation of the frontoinsular and anterior cingulate cortices in empathy for pain. J Neurosci. 2010;30(10):3739–44.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lamm C, Meltzoff AN, Decety J. How do we empathize with someone who is not like us? A functional magnetic resonance imaging study. J Cogn Neurosci. 2010;22(2):362–76.PubMedCrossRefGoogle Scholar
  59. 59.
    Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303(5661):1157–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Kuo WJ, Sjostrom T, Chen YP, Wang YH, Huang CY. Intuition and deliberation: two systems for strategizing in the brain. Science. 2009;324(5926):519–22.PubMedCrossRefGoogle Scholar
  61. 61.
    Kirk U, Downar J, Montague PR. Interoception drives increased rational decision-making in meditators playing the ultimatum game. Front Neurosci. 2011;5:49.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sanfey AG, Rilling JK, Aronson JA, Nystrom LE, Cohen JD. The neural basis of economic decision-making in the Ultimatum Game. Science. 2003;300(5626):1755–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Bach DR, Dolan RJ. Knowing how much you don’t know: a neural organization of uncertainty estimates. Nat Rev Neurosci. 2012;13(8):572–86.PubMedCrossRefGoogle Scholar
  64. 64.
    Bossaerts P. Risk and risk prediction error signals in anterior insula. Brain Struct Funct. 2010;214(5–6):645–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Preuschoff K, Quartz SR, Bossaerts P. Human insula activation reflects risk prediction errors as well as risk. J Neurosci. 2008;28(11):2745–52.PubMedCrossRefGoogle Scholar
  66. 66.
    Ullsperger M, Harsay HA, Wessel JR, Ridderinkhof KR. Conscious perception of errors and its relation to the anterior insula. Brain Struct Funct. 2010;214(5–6):629–43.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    King-Casas B, Sharp C, Lomax-Bream L, Lohrenz T, Fonagy P, Montague PR. The rupture and repair of cooperation in borderline personality disorder. Science. 2008;321(5890):806–10.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Montague PR, Lohrenz T. To detect and correct: norm violations and their enforcement. Neuron. 2007;56(1):14–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Xiang T, Lohrenz T, Montague PR. Computational substrates of norms and their violations during social exchange. J Neurosci. 2013;33(3):1099–8a.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Picard F. State of belief, subjective certainty and bliss as a product of cortical dysfunction. Cortex. 2013;49(9):2494–500.PubMedCrossRefGoogle Scholar
  71. 71.
    Barrett LF, Quigley KS, Bliss-Moreau E, Aronson KR. Interoceptive sensitivity and self-reports of emotional experience. J Pers Soc Psychol. 2004;87(5):684–97.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Adolphs R. Neural systems for recognizing emotion. Curr Opin Neurobiol. 2002;12(2):169–77.PubMedCrossRefGoogle Scholar
  73. 73.
    Phelps EA. Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol. 2006;57:27–53.PubMedCrossRefGoogle Scholar
  74. 74.
    Pessoa L, Adolphs R. Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat Rev Neurosci. 2010;11(11):773–83.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Stevens JS, Hamann S. Sex differences in brain activation to emotional stimuli: a meta-analysis of neuroimaging studies. Neuropsychologia. 2012;50(7):1578–93.PubMedCrossRefGoogle Scholar
  76. 76.
    Britz J, Van De Ville D, Michel CM. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. NeuroImage. 2010;52(4):1162–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A. Functional connectivity of the insula in the resting brain. NeuroImage. 2011;55(1):8–23.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Fan J, Xu P, Van Dam NT, Eilam-Stock T, Gu X, Luo YJ, et al. Spontaneous brain activity relates to autonomic arousal. J Neurosci. 2012;32(33):11176–86.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, et al. A core system for the implementation of task sets. Neuron. 2006;50(5):799–812.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A. 2008;105(34):12569–74.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Lane RD, Reiman EM, Axelrod B, Yun LS, Holmes A, Schwartz GE. Neural correlates of levels of emotional awareness. Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J Cogn Neurosci. 1998;10(4):525–35.PubMedCrossRefGoogle Scholar
  83. 83.
    Lieberman MD. Social cognitive neuroscience: a review of core processes. Annu Rev Psychol. 2007;58:259–89.PubMedCrossRefGoogle Scholar
  84. 84.
    Posner MI, Rothbart MK. Attention, self-regulation and consciousness. Philos Trans R Soc Lond Ser B Biol Sci. 1998;353(1377):1915–27.CrossRefGoogle Scholar
  85. 85.
    Valentini E. The role of anterior insula and anterior cingulate in empathy for pain. J Neurophysiol. 2010;104(2):584–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Fan J, Hof PR, Guise KG, Fossella JA, Posner MI. The functional integration of the anterior cingulate cortex during conflict processing. Cereb Cortex. 2008;18(4):796–805.PubMedCrossRefGoogle Scholar
  87. 87.
    Friston K. Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu Rev Neurosci. 2002;25:221–50.PubMedCrossRefGoogle Scholar
  88. 88.
    Friston K. The free-energy principle: a unified brain theory? Nat Rev Neurosci. 2010;11(2):127–38.PubMedCrossRefGoogle Scholar
  89. 89.
    Tononi G, Koch C. The neural correlates of consciousness: an update. Ann N Y Acad Sci. 2008;1124:239–61.PubMedCrossRefGoogle Scholar
  90. 90.
    Allman JM, Watson KK, Tetreault NA, Hakeem AY. Intuition and autism: a possible role for Von Economo neurons. Trends Cogn Sci. 2005;9(8):367–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Taylor GJ. Recent developments in alexithymia theory and research. Can J Psychiatr. 2000;45(2):134–42.CrossRefGoogle Scholar
  92. 92.
    Joukamaa M, Saarijarvi S, Muuriaisniemi ML, Salokangas RK. Alexithymia in a normal elderly population. Compr Psychiatry. 1996;37(2):144–7.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Kokkonen P, Karvonen JT, Veijola J, Laksy K, Jokelainen J, Jarvelin MR, et al. Prevalence and sociodemographic correlates of alexithymia in a population sample of young adults. Compr Psychiatry. 2001;42(6):471–6.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kim EJ, Sidhu M, Gaus SE, Huang EJ, Hof PR, Miller BL, et al. Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb Cortex. 2012;22(2):251–9.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Seeley WW. Anterior insula degeneration in frontotemporal dementia. Brain Struct Funct. 2010;214(5–6):465–75.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Seeley WW, Carlin DA, Allman JM, Macedo MN, Bush C, Miller BL, et al. Early frontotemporal dementia targets neurons unique to apes and humans. Ann Neurol. 2006;60(6):660–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Kaufman JA, Paul LK, Manaye KF, Granstedt AE, Hof PR, Hakeem AY, et al. Selective reduction of Von Economo neuron number in agenesis of the corpus callosum. Acta Neuropathol. 2008;116(5):479–89.PubMedCrossRefGoogle Scholar
  98. 98.
    Butti C, Santos M, Uppal N, Hof PR. Von Economo neurons: clinical and evolutionary perspectives. Cortex. 2013;49(1):312–26.PubMedCrossRefGoogle Scholar
  99. 99.
    Santos M, Uppal N, Butti C, Wicinski B, Schmeidler J, Giannakopoulos P, et al. Von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children. Brain Res. 2011;1380:206–17.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Simeon D, Giesbrecht T, Knutelska M, Smith RJ, Smith LM. Alexithymia, absorption, and cognitive failures in depersonalization disorder: a comparison to posttraumatic stress disorder and healthy volunteers. J Nerv Ment Dis. 2009;197(7):492–8.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Taylor GJ, Bagby RM, Parker JD. The 20-Item Toronto Alexithymia Scale. IV. Reliability and factorial validity in different languages and cultures. J Psychosom Res. 2003;55(3):277–83.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Hill E, Berthoz S, Frith U. Brief report: cognitive processing of own emotions in individuals with autistic spectrum disorder and in their relatives. J Autism Dev Disord. 2004;34(2):229–35.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Bird G, Silani G, Brindley R, White S, Frith U, Singer T. Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain. 2010;133(Pt 5):1515–25.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sturm VE, Levenson RW. Alexithymia in neurodegenerative disease. Neurocase. 2011;17(3):242–50.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Terasawa Y, Kurosaki Y, Ibata Y, Moriguchi Y, Umeda S. Attenuated sensitivity to the emotions of others by insular lesion. Front Psychol. 2015;6:1314.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Boucher O, Rouleau I, Lassonde M, Lepore F, Bouthillier A, Nguyen DK. Social information processing following resection of the insular cortex. Neuropsychologia. 2015;71:1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Calder AJ, Keane J, Manes F, Antoun N, Young AW. Impaired recognition and experience of disgust following brain injury. Nat Neurosci. 2000;3(11):1077–8.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Couto B, Sedeno L, Sposato LA, Sigman M, Riccio PM, Salles A, et al. Insular networks for emotional processing and social cognition: comparison of two case reports with either cortical or subcortical involvement. Cortex. 2013;49(5):1420–34.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fareed Jumah
    • 1
  1. 1.School of Medicine, An-Najah National UniversityNablusPalestine

Personalised recommendations