Maintaining Cone Function in Rod-Cone Dystrophies

  • José-Alain Sahel
  • Thierry Léveillard
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1074)


Retinal degenerative diseases are a major cause of untreatable blindness due to a loss of photoreceptors. Recent advances in genetics and gene therapy for inherited retinal dystrophies (IRDs) showed that therapeutic gene transfer holds a great promise for vision restoration in people with currently incurable blinding diseases. Due to the huge genetic heterogeneity of IRDs that represents a major obstacle for gene therapy development, alternative therapeutic approaches are needed. This review focuses on the rescue of cone function as a therapeutic option for maintaining central vision in rod-cone dystrophies. It highlights recent developments in better understanding the mechanisms of action of the trophic factor RdCVF and its potential as a sight-saving therapeutic strategy.


Retinal degeneration Photoreceptors Rod-derived cone viability factor Aerobic glycolysis Neuroprotective gene therapy Nucleoredoxin-like-1 


Financial Support

LABEX LIFESENSES [ANR-10-LABX-65], Foundation Fighting Blindness.


  1. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J, Dejneka NS, Pearce-Kelling SE, Maguire AM, Palczewski K, Hauswirth WW, Jacobson SG (2005) Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 12:1072–1082CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ait-Ali N, Fridlich R, Millet-Puel G, Clerin E, Delalande F, Jaillard C, Blond F, Perrocheau L, Reichman S, Byrne LC, Olivier-Bandini A, Bellalou J, Moyse E, Bouillaud F, Nicol X, Dalkara D, van Dorsselaer A, Sahel JA, Leveillard T (2015) Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell 161:817–832CrossRefPubMedGoogle Scholar
  3. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR (2008) Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 358:2231–2239CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beck RW, Maguire MG, Bressler NM, Glassman AR, Lindblad AS, FERRIS FL (2007) Visual acuity as an outcome measure in clinical trials of retinal diseases. Ophthalmology 114:1804–1809CrossRefPubMedGoogle Scholar
  5. BENNETT J, ASHTARI M, WELLMAN J, Marshall KA, Cyckowski LL, Chung DC, Mccague S, Pierce EA, Chen Y, Bennicelli JL, Zhu X, Ying GS, Sun J, Wright JF, Auricchio A, Simonelli F, Shindler KS, Mingozzi F, High KA, Maguire AM (2012) AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 4:120ra115CrossRefGoogle Scholar
  6. Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, Roska B (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417CrossRefPubMedPubMedCentralGoogle Scholar
  7. Byrne LC, Dalkara D, Luna G, Fisher SK, Clerin E, Sahel JA, Léveillard T, Flannery JG (2015) Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration. J Clin Invest 125:105–116CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cepko C, Punzo C (2015) Cell metabolism: sugar for sight. Nature 522:428–429CrossRefPubMedGoogle Scholar
  9. Chalmel F, Léveillard T, Jaillard C, Lardenois A, Berdugo N, Morel E, Koehl P, Lambrou G, Holmgren A, Sahel JA, Poch O (2007) Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential. BMC Mol Biol 8:74CrossRefPubMedPubMedCentralGoogle Scholar
  10. Choi RY, Engbretson GA, Solessio EC, Jones GA, Coughlin A, Aleksic I, Zuber ME (2011) Cone degeneration following rod ablation in a reversible model of retinal degeneration. Invest Ophthalmol Vis Sci 52:364–373CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cronin T, Raffelsberger W, Lee-Rivera I, Jaillard C, Niepon ML, Kinzel B, Clerin E, Petrosian A, Picaud S, Poch O, Sahel JA, Leveillard T (2010) The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress. Cell Death Differ 17:1199–1210CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cronin T, Vandenberghe LH, Hantz P, Juttner J, Reimann A, Kacso AE, Huckfeldt RM, Busskamp V, Kohler H, Lagali PS, Roska B, Bennett J (2014) Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 6:1175–1190CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dalkara D, Duebel J, Sahel JA (2015) Gene therapy for the eye focus on mutation-independent approaches. Curr Opin Neurol 28:51–60CrossRefPubMedPubMedCentralGoogle Scholar
  14. Elachouri G, Lee-Rivera I, Clerin E, Argentini M, Fridlich R, Blond F, Ferracane V, Yang Y, Raffelsberger W, Wan J, Bennett J, Sahel JA, Zack DJ, Leveillard T (2015) Thioredoxin rod-derived cone viability factor protects against photooxidative retinal damage. Free Radic Biol Med 81:22–29CrossRefGoogle Scholar
  15. Fridlich R, Delalande F, Jaillard C, Lu J, Poidevin L, Cronin T, Perrocheau L, Millet-Puel G, Niepon ML, Poch O, Holmgren A, van Dorsselaer A, Sahel JA, Leveillard T (2009) The thioredoxin-like protein rod-derived cone viability factor (RdCVFL) interacts with TAU and inhibits its phosphorylation in the retina. Mol Cell Proteomics 8:1206–1218CrossRefPubMedPubMedCentralGoogle Scholar
  16. Geller AM, Sieving PA (1993) Assessment of foveal cone photoreceptors in Stargardt's macular dystrophy using a small dot detection task. Vis Res 33:1509–1524CrossRefGoogle Scholar
  17. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ, Boye SL, Flotte TR, Byrne BJ, Jacobson SG (2008) Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979–990CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS, Busskamp V, Cepko CL, Roska B (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667–675CrossRefGoogle Scholar
  19. Léveillard T, Sahel JA (2010) Rod-derived cone viability factor for treating blinding diseases: from clinic to redox signaling. Sci Transl Med 2:26ps16CrossRefPubMedPubMedCentralGoogle Scholar
  20. Léveillard T, Sahel JA (2016) Metabolic and redox signaling in the retina. Cell Mol Life Sci 74:3649–3665CrossRefPubMedPubMedCentralGoogle Scholar
  21. Léveillard T, Mohand-Said S, Lorentz O, Hicks D, Fintz AC, Clerin E, Simonutti M, Forster V, Cavusoglu N, Chalmel F, Dolle P, Poch O, Lambrou G, Sahel JA (2004) Identification and characterization of rod-derived cone viability factor. Nat Genet 36:755–759CrossRefPubMedGoogle Scholar
  22. Mace E, Caplette R, Marre O, Sengupta A, Chaffiol A, Barbe P, Desrosiers M, Bamberg E, Sahel JA, Picaud S, Duebel J, Dalkara D (2015) Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther 23:7–16CrossRefPubMedGoogle Scholar
  23. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell'osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, Mcdonnell JW, Auricchio A, High KA, Bennett J (2008) Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 358:2240–2248CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mccall MA, Gregg RG, Merriman K, Goto Y, Peachey NS, Stanford LR (1996) Morphological and physiological consequences of the selective elimination of rod photoreceptors in transgenic mice. Exp Eye Res 63:35–50CrossRefPubMedGoogle Scholar
  25. Mei X, Chaffiol A, Kole C, Yang Y, Millet-Puel G, Clerin E, Ait-Ali N, Bennett J, Dalkara D, Sahel JA, Duebel J, Léveillard T (2016) The thioredoxin encoded by the rod-derived cone viability factor gene protects cone photoreceptors against oxidative stress. Antioxid Redox Signal 24:909–923CrossRefPubMedGoogle Scholar
  26. Mohand-Said S, Deudon-Combe A, Hicks D, Simonutti M, Forster V, Fintz AC, Léveillard T, Dreyfus H, Sahel JA (1998) Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse. Proc Natl Acad Sci U S A 95:8357–8362CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mohand-Said S, Hicks D, Dreyfus H, Sahel JA (2000) Selective transplantation of rods delays cone loss in a retinitis pigmentosa model. Arch Ophthalmol 118:807–811CrossRefPubMedGoogle Scholar
  28. Mohand-Said S, Hicks D, Léveillard T, Picaud S, Porto F, Sahel JA (2001) Rod-cone interactions: developmental and clinical significance. Prog Retin Eye Res 20:451–467CrossRefPubMedGoogle Scholar
  29. Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12:44–52CrossRefGoogle Scholar
  30. Reichman S, Kalathur RK, Lambard S, Ait-Ali N, Yang Y, Lardenois A, Ripp R, Poch O, Zack DJ, Sahel JA, Léveillard T (2010) The homeobox gene CHX10/VSX2 regulates RdCVF promoter activity in the inner retina. Hum Mol Genet 19:250–261CrossRefPubMedGoogle Scholar
  31. Thompson DA, Ali RR, Banin E, Branham KE, Flannery JG, Gamm DM, Hauswirth WW, Heckenlively JR, Iannaccone A, Jayasundera KT, Khan NW, Molday RS, Pennesi ME, Reh TA, Weleber RG, Zacks DN, Monaciano C (2015) Advancing therapeutic strategies for inherited retinal degeneration: recommendations from the Monaciano Symposium. Invest Ophthalmol Vis Sci 56:918–931CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wang XW, Liou YC, Ho B, Ding JL (2007) An evolutionarily conserved 16-kDa thioredoxin-related protein is an antioxidant which regulates the NF-kappaB signaling pathway. Free Radic Biol Med 42:247–259CrossRefPubMedGoogle Scholar
  33. Wright AF (1997) A searchlight through the fog. Nat Genet 17:132–134CrossRefPubMedGoogle Scholar
  34. Yang Y, Mohand-Said S, Danan A, Simonutti M, Fontaine V, Clerin E, Picaud S, Leveillard T, Sahel JA (2009) Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. Mol Ther 17:787–795CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhang Y, Ivanova E, Bi A, Pan ZH (2009) Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci 29:9186–9196CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • José-Alain Sahel
    • 1
    • 2
    • 3
  • Thierry Léveillard
    • 1
  1. 1.Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la VisionParisFrance
  2. 2.CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423ParisFrance
  3. 3.Department of OphthalmologyThe University of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations