Advertisement

Crystalline Silicon Solar Cells

  • Gerald E. JellisonJr.Email author
  • Pooran C. Joshi
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 212)

Abstract

Most solar cells are fabricated from crystalline or semicrystalline silicon since they are relatively inexpensive starting materials and the resulting solar cells are very efficient. As a result, the optical properties of silicon are extremely important in many aspects of solar cell manufacture, and have been determined by many groups using several techniques. The most reliable values of the optical functions of silicon have been determined using spectroscopic ellipsometry, augmented by optical transmission measurements of the absorption coefficient for wavelengths greater than 700 nm. Obviously, these optical functions depend on the wavelength of light, but they also depend significantly on temperature and morphology. Several thin films are very important to solar cell manufacture, including silicon nitride, silicon dioxide, and aluminum oxide. While the optical properties of these thin films are strong functions of deposition conditions, spectroscopic ellipsometry is ideal for characterizing them. This work will present recent spectroscopic ellipsometry data and optical transmission data from which the optical functions of silicon are obtained. The optical transmission data have been fit from 700 to 1200 nm to a modification of Macfarlane’s et al. formula [Phys. Rev. 111, (1958) 759], resulting in a reduced χ2 of 0.84. This formulation is particularly valuable in that it gives the optical absorption coefficient from 700 to 1200 nm as a function of both wavelength and temperature.

Notes

Acknowledgements

GEJ acknowledges Oak Ridge National Laboratory for the use of facilities in the preparation of this manuscript. The work of PCJ was supported by the Department of Energy, Laboratory Directed Research and Development program at Oak Ridge National Laboratory, under contract DE-AC05-00OR22725.

References

  1. 1.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)ADSCrossRefGoogle Scholar
  2. 2.
    W.C. Dash, R. Newman, Phys. Rev. 99, 1151 (1955)ADSCrossRefGoogle Scholar
  3. 3.
    C.D. Salzberg, J.J. Villa, J. Opt. Soc. Am. 47, 244 (1957)ADSCrossRefGoogle Scholar
  4. 4.
    W.G. Spitzer, H.Y. Fan, Phys. Rev. 106, 882 (1957)ADSCrossRefGoogle Scholar
  5. 5.
    G.G. Macfarlane, T.P. McLean, J.E. Quarrington, V. Roberts, Phys. Rev. 111, 1245 (1958)ADSCrossRefGoogle Scholar
  6. 6.
    H.R. Philipp, E.A. Taft, Phys. Rev. 120, 37 (1960)ADSCrossRefGoogle Scholar
  7. 7.
    W. Primak, Appl. Opt. 10, 759 (1971)ADSCrossRefGoogle Scholar
  8. 8.
    H.R. Philipp, J. Appl. Phys. 43, 2835 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    H.W. Icenogle, B.C. Platt, W.L. Wolfe, Appl. Opt. 15, 2348 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    H.A. Weakliem, D. Redfield, J. Appl. Phys. 50, 1491 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    G.E. Jellison Jr., D.H. Lowndes, Appl. Phys. Lett. 41, 594 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    G.E. Jellison Jr. in Ch. 3 of Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene (William Andrew, Norwich, NY, 2005)Google Scholar
  13. 13.
    I.H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965)ADSCrossRefGoogle Scholar
  14. 14.
    D.E. Aspnes, A.A. Studna, Phys. Rev. B 27, 985 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    G.E. Jellison Jr., Opt. Mat. 1, 41 (1992)CrossRefGoogle Scholar
  16. 16.
    T. Yasuda, D.E. Aspnes, Appl. Opt. 33, 7435 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    C.M. Herzinger, B. Johs, W.A. McGahan, J.A. Woollam, W. Paulson, J. Appl. Phys. 83, 3323 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    C. Schinke, K. Bothe, P.C. Peest, J. Schmidt, R. Brendel, Appl. Phys. Lett. 104, 081915 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    C. Schinke, P.C. Peest, J. Schmidt, R. Brendel, K. Bothe, M.R. Vogt, I. Kroger, S. Winter, A. Schirmache, S. Lim, H.T. Nguyen, D. MacDonald, AIP Adv. 5, 067168 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    J. Geist, A. Migdall, H.P. Baltes, Appl. Opt. 27, 3777 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    J. Geist, in Handbook of Optical Constants, ed. by E.D. Palik (Academic Press, London, 1998)Google Scholar
  22. 22.
    M.J. Keevers, M.A. Green, Appl. Phys. Lett. 66, 174 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    M.A. Green, Sol. Energy Mater. Sol. Cells 92, 1305 (2008)CrossRefGoogle Scholar
  24. 24.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 3rd edn. (Springer, Berlin, 2005)CrossRefGoogle Scholar
  25. 25.
    P. Lautenschlager, M. Garriga, L. Viña, M. Cardona, Phys. Rev. B 36, 4821 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    C.D. Thurmond, J. Electrochem. Soc. 122, 1133 (1975)CrossRefGoogle Scholar
  27. 27.
    G.E. Jellison Jr., F.A. Modine, Appl. Phys. Lett. 41, 180 (1982)ADSCrossRefGoogle Scholar
  28. 28.
    G.E. Jellison Jr., F.A. Modine, Phys. Rev. B 27, 7466 (1983)ADSCrossRefGoogle Scholar
  29. 29.
    G.E. Jellison Jr., H.H. Burke, J. Appl. Phys. 60, 841 (1986)ADSCrossRefGoogle Scholar
  30. 30.
    G.E. Jellison Jr., F.A. Modine, J. Appl. Phys. 76, 3758 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    G.E. Jellison Jr., S.P. Withrow, J.W. McCamy, J.D. Budai, D. Lubben, M.J. Godbole, Phys. Rev. B 52, 14607 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    G.E. Jellison Jr., M.F. Chisholm, S.M. Gorbatkin, Appl. Phys. Lett. 62, 3348 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    P. Etchegoin, J. Kircher, M. Cardona, Phys. Rev. B 47, 10292 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    F.H. Pollak, Surf. Sci. 37, 863 (1973)ADSCrossRefGoogle Scholar
  35. 35.
    G.E. Jellison Jr., D.H. Lowndes, Appl. Phys. Lett. 47, 718 (1985)ADSCrossRefGoogle Scholar
  36. 36.
    G.E. Jellison Jr., D.H. Lowndes, Appl. Phys. Lett. 51, 352 (1987)ADSCrossRefGoogle Scholar
  37. 37.
    K.D. Li, P.M. Fauchet, Solid State Commun. 61, 207 (1987)ADSCrossRefGoogle Scholar
  38. 38.
    G.E. Jellison Jr., F.A. Modine, Appl. Phys. Lett. 69, 371 (1996); ibid. 2137 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)CrossRefGoogle Scholar
  40. 40.
    A.S. Ferlauto, G.M. Ferreira, M. Pearce, C.R. Wronski, R.W. Collins, X. Deng, G. Ganguly, J. Appl. Phys. 92, 2424 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    G.D. Cody, in Semiconductors and Semimetals, vol. 21B ed. by J.I. Pankove (Academic, Orlando, FL, 1984), p. 11Google Scholar
  42. 42.
    G.E. Jellison Jr., V.I. Merkulov, A.A. Puretzky, D.B. Geohegan, G. Eres, D.H. Lowndes, J.B. Caughman, Thin Solid Films 377–378, 68 (2000)CrossRefGoogle Scholar
  43. 43.
    G.E. Jellison Jr., F.A. Modine, P. Doshi, A. Rohatgi, Thin Solid Films 313–314, 193 (1998)CrossRefGoogle Scholar
  44. 44.
    P. Doshi, G.E. Jellison Jr., A. Rohatgi, Appl. Opt. 36, 7826 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    M.F. Saenger, J. Sun, M. Schadel, J. Hilfiker, M. Schubert, J.A. Woollam, Thin Solid Films 518, 1830 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    E.A. Taft, L. Cordes, J. Electrochem. Soc. 126, 131 (1979)CrossRefGoogle Scholar
  47. 47.
    G.E. Jellison Jr., J. Appl. Phys. 69, 7627 (1991)ADSCrossRefGoogle Scholar
  48. 48.
    C.M. Herzinger, B. Johs, W.A. McGahan, W. Paulson, Thin Solid Films 313–314, 281 (1998)CrossRefGoogle Scholar
  49. 49.
    B. Hoex, J. Schmidt, P. Pohl, M.C.M. van de Sanden, W.M.M. Kessels, J. Appl. Phys. 104, 044903 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    I.H. Malitson, M.J. Dodge, J. Opt. Soc. Am. 62, 1405 (1972)Google Scholar
  51. 51.
    G.E. Jellison Jr., F.A. Modine, Appl. Opt. 36, 8184 (1997); Appl. Opt. 36, 8190 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations