# Dielectric Function Modeling

• James N. Hilfiker
• Tom Tiwald
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 212)

## Abstract

Spectroscopic ellipsometry (SE) is commonly used to measure the optical constants of thin films and bulk materials. The optical constants vary with wavelength, which is referred to as dispersion. Rather than independently determine the optical constants at each wavelength, it is convenient to use an equation to describe their dispersion. A dispersion equation simplifies the description of the optical constants and improves the efficiency of data analysis. We begin this chapter by describing the optical constants, optical resonance, and the Kramers-Kronig relations. Different absorption phenomena are also briefly described. Many dispersion equations relate an optical resonance or absorption in terms of the complex dielectric function. Multiple resonance and absorption features can be summed to describe the overall dielectric function for the material. Finally, we review the common dispersion equations used for photovoltaic materials. The Cauchy and Sellmeier equations are used to describe transparent materials. The Lorentz, Harmonic, and Gaussian equations describe a resonant absorption. The Tauc-Lorentz and Cody-Lorentz were developed for amorphous semiconductors with dispersion features necessary to describe the optical functions near the bandgap energy. Additional dispersion equations are designed to describe the critical points in semiconductor band structure. We conclude this review with a description of polynomials, splines, and basis-splines, which are used to empirically match the optical functions of many materials.

## References

1. 1.
H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, West Sussex, UK, 2007), pp. 347–348Google Scholar
2. 2.
J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)
3. 3.
R.W. Collins, A.S. Ferlauto, in Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene (William Andrew, New York, 2005). pp. 93–235, Chap. “Optical Physics of Materials”Google Scholar
4. 4.
H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, West Sussex, UK, 2007), pp. 357–360Google Scholar
5. 5.
S. Logothetidis, Ellipsometry of Functional Organic Surfaces and Films, ed. by K. Hinrichs, K.-J. Eichorn, (Springer, Berlin, 2014). pp. 173–195, Chap. “Polymer Blends and Composites”Google Scholar
6. 6.
P.Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2001)
7. 7.
8. 8.
M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons, and Polaritons (Springer, Berlin, 2004)Google Scholar
9. 9.
W. Sellmeier, Annalen der Physik und Chemie 143, 271 (1871)Google Scholar
10. 10.
Schott Glass Catalog, p. 69 (2014)Google Scholar
11. 11.
C.M. Herzinger, B. Johs, W.A. McGahan, J.A. Woollam, W. Paulson, J. Appl. Phys. 83, 3323 (1998)
12. 12.
L. Cauchy, Bull. Des. Sc. Math. 14, 9 (1830)Google Scholar
13. 13.
F. Urbach, Phys. Rev. 92, 1324 (1953)
14. 14.
F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972)Google Scholar
15. 15.
C. Kittel, Introduction to Solid State Physics, 5th edn. (Wiley, New York, 1976)
16. 16.
T.E. Tiwald, D.W. Thompson, J.A. Woollam, W. Paulson, R. Hance, Thin Solid Films 313–314, 661 (1998)
17. 17.
D. De Sousa Meneses, M. Malki, P. Echegut, J. Non-Cryst. Solids 351, 769–776 (2006)
18. 18.
K.-E. Peiponen, E.M. Vartiainen, Phys. Rev. B 44, 8301 (1991)
19. 19.
G.E. Jellison, Jr., F.A. Modine, Appl. Phys. Lett. 69, 371 (1996); Erratum, Appl. Phys. Lett. 69, 2137 (1996)
20. 20.
A.S. Ferlauto, G.M. Ferreira, J.M. Pearce, C.R. Wronski, R.W. Collins, Xunming Deng, Gautam Ganguly, J. Appl. Phys. 92, 2424 (2002)
21. 21.
M. Cardona, Solid State Physics, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic, New York, 1969). Suppl. 11 “Modulation Spectroscopy”Google Scholar
22. 22.
D.E. Aspnes, Handbook on Semiconductors, vol. 2, ed. by M. Balkanski (North Holland, 1980), pp. 125–127, Chap. “Modulation Spectroscopy/Electric Field Effects on the Dielectric Function of Semiconductors”Google Scholar
23. 23.
P. Lautenschlager, M. Garriga, L. Vina, M. Cardona, Phys. Rev. B 36, 4821 (1987)
24. 24.
P. Lautenschlager, M. Garriga, S. Logothetidis, M. Cardona, Phys. Rev. B 35, 9174 (1987)
25. 25.
S. Adachi, Phys. Rev. B 35, 7454 (1987)
26. 26.
S. Adachi, J. Appl. Phys. 66, 6030 (1989)
27. 27.
Mathias Schubert, Tino Hofmann, Bernd Rheinländer, Ines Pietzonka, Torsten Sass, Volker Gottschalch, John A. Woollam, Phys. Rev. B 60, 16618 (1999)
28. 28.
B. Johs, C.M. Herzinger, J.H. Dinan, A. Cornfeld, J.D. Benson, Thin Solid Films 313–314, 137 (1998)
29. 29.
US Patent #5,796,983, Dielectric function parametric model, and method of useGoogle Scholar
30. 30.
B. Johs, J.A. Woollam, C.M. Herzinger, J. Hilfiker, R. Synowicki, C.L. Bungay, SPIE Proc. CR72, 29 (1999)Google Scholar
31. 31.
Y.S. Ihn, T.J. Kim, T.H. Ghong, Y.D. Kim, D.E. Aspnes, J. Kossut, Thin Solid Films 455–456, 222 (2004)
32. 32.
B. Johs, J.S. Hale, Phys. Stat. Sol. A 205, 715 (2008)
33. 33.
E. Cheney, D. Kincaid, Numerical Mathematics and Computing, 3rd edn. (Brooks/Cole Publishing, 1994)Google Scholar