Transparent Conductive Oxide Materials

  • Hiroyuki FujiwaraEmail author
  • Shohei Fujimoto
Part of the Springer Series in Optical Sciences book series (SSOS, volume 212)


For most of solar cell devices, a transparent conductive oxide (TCO) electrode is a vital component. Nevertheless, free carrier and interband transitions that occur within TCO layers reduce the short-circuit current density (Jsc) rather significantly. Thus, the suppression of the parasitic optical absorption in TCO layers is crucial in improving solar cell efficiencies. The free carrier absorption in all TCO materials can be described by the simple Drude model in which absorption characteristics of free electrons are expressed based on two parameters: i.e., optical carrier concentration and optical mobility. From these parameters, the carrier transport properties of TCO materials can further be studied. In this chapter, the optical transitions and physics of free electrons in various TCO materials are reviewed. In particular, the variation of TCO optical constants with carrier concentration is explained in detail. This chapter further introduces ellipsometry analyses of various TCO layers. The ellipsometry characterization examples described here include the analyses of standard (thin) layers, thicker layers, and textured layers. From the absorption features derived from theoretical treatments summarized in this chapter, Jsc loss in actual solar cells can be estimated.


  1. 1.
    T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, H. Fujiwara, Phys. Rev. Appl. 2, 034012 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Nat. Nanotech. 11, 75 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    P. Koirala, J. Li, H.P. Yoon, P. Aryal, S. Marsillac, A.A. Rockett, N.J. Podraza, R.W. Collins, Prog. Photovolt. 24, 1055 (2016)CrossRefGoogle Scholar
  5. 5.
    J.P. Seif, A. Descoeudres, M. Filipic, F. Smole, M. Topic, Z.C. Holman, S. De Wolf, C. Ballif, J. Appl. Phys. 115, 024502 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    J. Bullock, M. Hettick, J. Geissbuhler, A.J. Ong, T. Allen, C.M. Sutter-Fella, T. Chen, H. Ota, E.W. Schaler, S. De Wolf, C. Ballif, A. Cuevas, A. Javey, Nat. Energy 1, 15031 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    X.L. Chen, B.H. Xu, J.M. Xue, Y. Zhao, C.C. Wei, J. Sun, Y. Wang, X.D. Zhang, X.H. Geng, Thin Solid Films 515, 3753 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, Thin Solid Films 451–452, 518 (2004)CrossRefGoogle Scholar
  9. 9.
    L. Kranz, A. Abate, T. Feurer, F. Fu, E. Avancini, J. Lockinger, P. Reinhard, S.M. Zakeeruddin, M. Gratzel, S. Buecheler, A.N. Tiwari, J. Phys. Chem. Lett. 6, 2676 (2015)CrossRefGoogle Scholar
  10. 10.
    M.T. Greiner, M.G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, Z.-H. Lu, Nat. Mater. 11, 76 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    H. Hosono, T. Kamiya, in Technology of Transparent Conductive Oxides (in Japanese), ed. by Japan Society for the Promotion of Science, Chapter 4 (Ohmsha, Tokyo, 2014), pp. 109–140Google Scholar
  12. 12.
    G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, Appl. Phys. Lett. 88, 253503 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M. Kroger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Appl. Phys. Lett. 95, 123301 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics 6, 591 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    C. Battaglia, X. Yin, M. Zheng, I.D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R.M. Wallace, A. Javey, Nano Lett. 14, 967 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    J. Geissbuhler, J. Werner, S. Martin de Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. De Wolf, C. Ballif, Appl. Phys. Lett. 107, 081601 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    J. Chen, J. Li, C. Thornberry, M.N. Sestak, R.W. Collins, J.D. Walker, S. Marsillac, A.R. Aquino, A. Rockett, in Proceedings of the 34th IEEE PVSC (IEEE, New York, 2009), p. 1748Google Scholar
  18. 18.
    T. Koida, M. Kondo, K. Tsutsumi, A. Sakaguchi, M. Suzuki, H. Fujiwara, J. Appl. Phys. 107, 033514 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    T. Koida, Phys. Status Solidi A. 214, 1600464 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T.N. Murakami, S. Fujimoto, M. Chikamatsu, H. Fujiwara, Phys. Rev. Appl. 5, 014012 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    A. Nakane, H. Tampo, M. Tamakoshi, S. Fujimoto, K.M. Kim, S. Kim, H. Shibata, S. Niki, H. Fujiwara, J. Appl. Phys. 120, 064505 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    For a review, see S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara, Prog. Photovolt. 18, 453 (2010)Google Scholar
  23. 23.
    M. Powalla, G. Voorwinden, D. Hariskos, P. Jackson, R. Kniese, Thin Solid Films 517, 2111 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    E. Hecht, Optics, 4th edn. (Addison Wesley, San Francisco, 2002)Google Scholar
  25. 25.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, West Sussex, UK, 2007)CrossRefGoogle Scholar
  26. 26.
    H. Fujiwara, M. Kondo, J. Appl. Phys. 101, 054516 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    D. Zhang, I.A. Digdaya, R. Santbergen, R.A.C.M.M. van Swaaij, P. Bronsveld, M. Zeman, J.A.M. van Roosmalen, A.W. Weeber, Sol. Energy Mater. Sol. Cells 117, 132 (2013)CrossRefGoogle Scholar
  28. 28.
    B. O’Regan, M. Gratzel, Nature 353, 737 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E.W. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, T.-C. Wen, Sci. Rep. 4, 4756 (2014)CrossRefGoogle Scholar
  30. 30.
    L. Barraud, Z.C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. De Wolf, C. Ballif, Sol. Energy Mater. Sol. Cells 115, 151 (2013)CrossRefGoogle Scholar
  31. 31.
    Unpublished results of S. Yamaguchi (SCREEN Semiconductor Solutions Co., Ltd.) and Y. Sugimoto (SCREEN Holdings Co., Ltd.)Google Scholar
  32. 32.
    H.S. So, J.-W. Park, D.H. Jung, K.H. Ko, H. Lee, J. Appl. Phys. 118, 085303 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    H. Fujiwara, M. Kondo, Phys. Rev. B 71, 075109 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    H. Yoshikawa, S. Adachi, Jpn. J. Appl. Phys. 36, 6237 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    G.E. Jellison Jr., L.A. Boatner, Phys. Rev. B 58, 3586 (1998); Erratum, Phys. Rev. B 65, 049902 (2001)Google Scholar
  36. 36.
    A.B. Djurisic, Y. Chan, E.H. Li, Appl. Phys. A 76, 37 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Z.C. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, C. Ballif, J. Appl. Phys. 113, 013107 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    D.E. Aspnes, A.A. Studna, E. Kinsbron, Phys. Rev. B 29, 768 (1984)ADSCrossRefGoogle Scholar
  39. 39.
    C. Tanguy, Phys. Rev. B 60, 10660 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986)zbMATHGoogle Scholar
  41. 41.
    P.I. Rovira, R.W. Collins, J. Appl. Phys. 85, 2015 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    M. Akagawa, H. Fujiwara, J. Appl. Phys. 112, 083507 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Sago, H. Fujiwara, Jpn. J. Appl. Phys. 51, 10NB01 (2012)CrossRefGoogle Scholar
  44. 44.
    K. Sago, H. Kuramochi, H. Iigusa, K. Utsumi, H. Fujiwara, J. Appl. Phys. 115, 133505 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    T. Gerfin, M. Gratzel, J. Appl. Phys. 79, 1722 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    R.A. Synowicki, Thin Solid Films 313–314, 394 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    K. Zhang, A.R. Forouhi, I. Bloomer, J. Vac. Sci. Technol. A 17, 1843 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    L. Meng, E. Crossan, A. Voronov, F. Placido, Thin Solid Films 422, 80 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    M. Losurdo, Thin Solid Films 455–456, 301 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    G.E. Jellison Jr., F.A. Modine, Appl. Phys. Lett. 69, 371 (1996); Erratum, Appl. Phys. Lett. 69, 2137 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra, J. Appl. Phys. 51, 6243 (1980)ADSCrossRefGoogle Scholar
  52. 52.
    E. Shanthi, A. Banerjee, V. Dutta, K.L. Chopra, J. Appl. Phys. 53, 1615 (1982)ADSCrossRefGoogle Scholar
  53. 53.
    S. Yamaguchi, Y. Sugimoto, H. Fujiwara, Thin Solid Films 534, 149 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    R.A. Synowicki, Phys. Status Solidi C 5, 1085 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    K. Forcht, A. Gombert, R. Joerger, M. Kohl, Thin Solid Films 302, 43 (1997)ADSCrossRefGoogle Scholar
  56. 56.
    K. Ellmer, J. Phys. D Appl. Phys. 34, 3097 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    Z.M. Jarzebski, Phys. Status Solidi A 71, 13 (1982)ADSCrossRefGoogle Scholar
  58. 58.
    M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen, J.S. Speck, Phys. Rev. B 93, 045203 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    T. Nagashima, M. Hangyo, Appl. Phys. Lett. 79, 3917 (2001)ADSCrossRefGoogle Scholar
  60. 60.
    T. Hofmann, C.M. Herzinger, A. Boosalis, T.E. Tiwald, J.A. Woollam, M. Schubert, Rev. Sci. Instrum. 81, 023101 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    R. Clanget, Appl. Phys. 2, 247 (1973)ADSCrossRefGoogle Scholar
  62. 62.
    Y. Ohhata, F. Shinoki, S. Yoshida, Thin Solid Films 59, 255 (1979)ADSCrossRefGoogle Scholar
  63. 63.
    T. Pisarkiewicz, K. Zakrzewska, E. Leja, Thin Solid Films 174, 217 (1989)ADSCrossRefGoogle Scholar
  64. 64.
    T. Minami, H. Sato, K. Ohashi, T. Tomofuji, S. Takata, J. Cryst. Growth 117, 370 (1992)ADSCrossRefGoogle Scholar
  65. 65.
    S. Brehme, F. Fenske, W. Fuhs, E. Nebauer, M. Poschenrieder, B. Selle, I. Sieber, Thin Solid Films 342, 167 (1999)ADSCrossRefGoogle Scholar
  66. 66.
    D.L. Young, T.J. Coutts, V.I. Kaydanov, A.S. Gilmore, W.P. Mulligan, J. Vac. Sci. Technol. A 18, 2978 (2000)ADSCrossRefGoogle Scholar
  67. 67.
    W.M. Kim, I.H. Kim, J.H. Ko, B. Cheong, T.S. Lee, K.S. Lee, D. Kim, T.-Y. Seong, J. Phys. D 41, 195409 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    F. Ruske, A. Pflug, V. Sittinger, B. Szyszka, D. Greiner, B. Rech, Thin Solid Films 518, 1289 (2009)ADSCrossRefGoogle Scholar
  69. 69.
    T. Yamada, H. Makino, N. Yamamoto, T. Yamamoto, J. Appl. Phys. 107, 123534 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    J.S. Kim, J.-H. Jeong, J.K. Park, Y.J. Baik, I.H. Kim, T.-Y. Seong, W.M. Kim, J. Appl. Phys. 111, 123507 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    A.A. Ziabari, S.M. Rozati, Phys. B 407, 4512 (2012)ADSCrossRefGoogle Scholar
  72. 72.
    G. Rey, C. Ternon, M. Modreanu, X. Mescot, V. Consonni, D. Bellet, J. Appl. Phys. 114, 183713 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    C. A. Niedermeier, S. Rhode, K. Ide, H. Hiramatsu, H. Hosono, T. Kamiya, M. A. Moram, Phys. Rev. B 95, 161202 (2017)Google Scholar
  74. 74.
    D.S. Ginley (ed.), Handbook of Transparent Conductors (Springer, New York, 2010)Google Scholar
  75. 75.
    R.E. Hummel, Electronic Properties of Materials, 4th edn. (Springer, New York, 2011)CrossRefGoogle Scholar
  76. 76.
    J.A. Sans, J.F. Sanchez-Royo, A. Segura, G. Tobias, E. Canadell, Phys. Rev. B 79, 195105 (2009)ADSCrossRefGoogle Scholar
  77. 77.
    I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)ADSCrossRefGoogle Scholar
  78. 78.
    B.E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg, C.G. Granqvist, Phys. Rev. B 37, 10244 (1988)ADSCrossRefGoogle Scholar
  79. 79.
    N. Sommer, J. Hupkes, U. Rau, Phys. Rev. Appl. 5, 024009 (2016)ADSCrossRefGoogle Scholar
  80. 80.
    D.C. Look, C.E. Stutz, R.J. Molnar, K. Saarinen, Z. Liliental-Weber, Solid State Commun. 117, 571 (2001)ADSCrossRefGoogle Scholar
  81. 81.
    D.C. Look, H. Lu, W.J. Schaff, J. Jasinski, Z. Liliental-Weber, Appl. Phys. Lett. 80, 258 (2002)ADSCrossRefGoogle Scholar
  82. 82.
    B.L. Anderson, R.L. Anderson, Fundamentals of Semiconductor Devices (McGraw-Hill, New York, 2005)Google Scholar
  83. 83.
    J. Steinhauser, S. Fay, N. Oliveira, E. Vallat-Sauvain, C. Ballif, Appl. Phys. Lett. 9, 142107 (2007)ADSCrossRefGoogle Scholar
  84. 84.
    S. Fay, J. Steinhauser, S. Nicolay, C. Ballif, Thin Solid Films 518, 2961 (2010)ADSCrossRefGoogle Scholar
  85. 85.
    E.F. Venger, A.V. Melnichuk, L.Y. Melnichuk, Y.A. Pasechnik, Phys. Status Solidi B 188, 823 (1995)ADSCrossRefGoogle Scholar
  86. 86.
    T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 24, L781 (1985)ADSCrossRefGoogle Scholar
  87. 87.
    S. Major, A. Banerjee, K.L. Chopra, Thin Solid Films 125, 179 (1985)ADSCrossRefGoogle Scholar
  88. 88.
    B.H. Choi, H.B. Im, J.S. Song, K.H. Yoon, Thin Solid Films 193–194, 712 (1990)CrossRefGoogle Scholar
  89. 89.
    Y. Shigesato, S. Takaki, T. Haranou, Appl. Surf. Sci. 48/49, 269 (1991)Google Scholar
  90. 90.
    J. Hu, R.G. Gordon, J. Appl. Phys. 72, 5381 (1992)ADSCrossRefGoogle Scholar
  91. 91.
    Y. Qu, T.A. Gessert, K. Ramanathan, R.G. Dhere, R. Noufi, T.J. Coutts, J. Vac. Sci. Technol. A 11, 996 (1993)ADSCrossRefGoogle Scholar
  92. 92.
    C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech, M. Wuttig, J. Appl. Phys. 95, 1911 (2004)ADSCrossRefGoogle Scholar
  93. 93.
    N. Ehrmann, R. Reineke-Koch, Thin Solid Films 519, 1475 (2010)ADSCrossRefGoogle Scholar
  94. 94.
    O. Nakagawara, Y. Kishimoto, H. Seto, Y. Koshido, Y. Yoshino, T. Makino, Appl. Phys. Lett. 89, 091904 (2006)ADSCrossRefGoogle Scholar
  95. 95.
    T. Minami, T. Miyata, Y. Ohtani, T. Kuboi, Phys. Status Solidi RRL 1, R31 (2007)ADSCrossRefGoogle Scholar
  96. 96.
    T. Minami, T. Kuboi, T. Miyata, Y. Ohtani, Phys. Status Solidi A 205, 255 (2008)ADSCrossRefGoogle Scholar
  97. 97.
    M. Kambe, M. Fukawa, N. Taneda, K. Sato, Sol. Energy Mater. Sol. Cells 90, 3014 (2006)CrossRefGoogle Scholar
  98. 98.
    T. Matsui, A. Bidiville, K. Maejima, H. Sai, T. Koida, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, Appl. Phys. Lett. 106, 053901 (2015)ADSCrossRefGoogle Scholar
  99. 99.
    K. Ding, T. Kirchartz, B.E. Pieters, C. Ulbrich, A.M. Ermes, S. Schicho, A. Lambertz, R. Carius, U. Rau, Sol. Energy Mater. Sol. Cells 95, 3318 (2011)CrossRefGoogle Scholar
  100. 100.
    M. Zeman, O. Isabella, S. Solntsev, K. Jager, Sol. Energy Mater. Sol. Cells 119, 94 (2013)CrossRefGoogle Scholar
  101. 101.
    B. Rech, H. Wagner, Appl. Phys. A 69, 155 (1999)ADSCrossRefGoogle Scholar
  102. 102.
    K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, H. Nishimura, Reports Res. Lab. Asahi Glass Co. Ltd, 42, 129 (1992)Google Scholar
  103. 103.
    S. Yamaguchi, Y. Sugimoto, H. Fujiwara, Thin Solid Films 565, 222 (2014)ADSCrossRefGoogle Scholar
  104. 104.
    Pilkington TEC glass performance dataGoogle Scholar
  105. 105.
    D. Bhachu, M.R. Waugh, K. Zeissler, W.R. Branford, I.P. Parkin, Chem. Eur. J. 17, 11613 (2011)CrossRefGoogle Scholar
  106. 106.
    J.W. Bowers, H.M. Upadhyaya, S. Calnan, R. Hashimoto, T. Nakada, A.N. Tiwari, Prog. Photovolt. 17, 265 (2009)CrossRefGoogle Scholar
  107. 107.
    C.K.T. Chew, C. Salcianu, P. Bishop, C.J. Carmalt, I.P. Parkin, J. Mater. Chem. C 3, 1118 (2015)CrossRefGoogle Scholar
  108. 108.
    A. Luque, S. Hegedus (eds.), Handbook of Photovoltaic Science and Engineering (Wiley, West Sussex, UK, 2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gifu UniversityGifuJapan

Personalised recommendations