Organic-Inorganic Hybrid Perovskite Solar Cells

  • Hiroyuki FujiwaraEmail author
  • Nikolas J. Podraza
  • Maria Isabel Alonso
  • Masato Kato
  • Kiran Ghimire
  • Tetsuhiko Miyadera
  • Masayuki Chikamatsu
Part of the Springer Series in Optical Sciences book series (SSOS, volume 212)


Quite high efficiencies exceeding 20% have been realized in solar cells incorporating organic-inorganic hybrid perovskites (APbX3), which have a unique structure with a center cation [A = CH3NH3+, HC(NH2) 2 + ] located within a PbX3 cage (X = I, Br, Cl). Superior characteristics of hybrid perovskite solar cells can be understood from the nature of optical transitions and the efficient carrier collection in the device. From these points of view, this chapter provides details on optical properties of various hybrid perovskite materials and carrier dynamics in the solar cells. In particular, based on the first-principles analyses of different perovskite materials, we present universal rules that allow the unified interpretation of the optical absorption phenomenon in APbX3 perovskites. The external quantum efficiency (EQE) analysis further reveals that high short-circuit current densities (>20 mA/cm2) observed in the perovskite solar cells originate from electric-field-assisted carrier collection and the suppressed optical losses in the devices. Although hybrid perovskites have quite favorable characteristics for solar cells, these materials exhibit rather intense phase change upon exposure to humid air. In this chapter, the degradation process of CH3NH3PbI3 in humid air, characterized by applying ellipsometry technique, is further presented and discussed.



N. J. Podraza and K. Ghimire would like to acknowledge D. Zhao, A. Cimaroli, Y. Ke, F. Hong, T. Shi, and Prof. Y. Yan for providing samples and materials; M. Junda for graphical assistance; and the National Science Foundation for financial support (CHE-1230246). M. I. Alonso acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through grants CSD2010-00044, MAT2015-70850-P, and the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496).


  1. 1.
    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Science 348, 1234 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Sci. Adv. 2, e1501170 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 9, 1989 (2016)CrossRefGoogle Scholar
  4. 4.
    T.J. Jacobsson, J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 9, 1706 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  6. 6.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Grätzel, T.J. White, J. Mater. Chem. A 1, 5628 (2013)CrossRefGoogle Scholar
  10. 10.
    P. Gao, M. Grätzel, M.K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014)CrossRefGoogle Scholar
  11. 11.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photon. 8, 506 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    H.S. Jung, N.-G. Park, Small 11, 10 (2015)CrossRefGoogle Scholar
  13. 13.
    T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Nat. Rev. Mater. 1, 15007 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    J.S. Manser, J.A. Christians, P.V. Kamat, Chem. Rev. 116, 12956 (2016)CrossRefGoogle Scholar
  15. 15.
    T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, T. Baikie, J. Phys. Chem. C 118, 16458 (2014)CrossRefGoogle Scholar
  16. 16.
    G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 982 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, Chem. Mater. 26, 1485 (2014)CrossRefGoogle Scholar
  18. 18.
    Q. Han, S.-H. Bae, P. Sun, Y.-T. Hsieh, Y. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, Y. Yang, Adv. Mater. 28, 2253 (2016)CrossRefGoogle Scholar
  19. 19.
    M.T. Weller, O.J. Weber, J.M. Frost, A. Walsh, J. Phys. Chem. Lett. 6, 3209 (2015)CrossRefGoogle Scholar
  20. 20.
    N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Angew. Chem. Int. Ed. 53, 3151 (2014)CrossRefGoogle Scholar
  21. 21.
    J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho, N.-G. Park, Adv. Energy Mater. 5, 1501310 (2015)CrossRefGoogle Scholar
  22. 22.
    Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry, K. Zhu, Chem. Mater. 28, 284 (2016)CrossRefGoogle Scholar
  23. 23.
    C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S.M. Zakeeruddin, U. Röthlisberger, M. Grätzel, Energy Environ. Sci. 9, 656 (2016)CrossRefGoogle Scholar
  24. 24.
    D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, H.J. Snaith, Science 351, 151 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T.N. Murakami, S. Fujimoto, M. Chikamatsu, H. Fujiwara, Phys. Rev. Appl. 5, 014012 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    M. Kato, T. Fujiseki, T. Miyadera, T. Sugita, S. Fujimoto, M. Tamakoshi, M. Chikamatsu, H. Fujiwara, J. Appl. Phys. 121, 115501 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Science 347, 519 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M.K. Nazeeruddin, M. Grätzel, F. De, Angelis. Nano Lett. 14, 3608 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    J.-H. Lee, N.C. Bristowe, P.D. Bristowe, A.K. Cheetham, Chem. Commun. 51, 6434 (2015)CrossRefGoogle Scholar
  32. 32.
    J.H. Lee, J.-H. Lee, E.-H. Kong, H.M. Jang, Sci. Rep. 6, 21687 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    J.S. Bechtel, R. Seshadri, A. Van der Ven, J. Phys. Chem. C 120, 12403 (2016)CrossRefGoogle Scholar
  34. 34.
    R.E. Wasylishen, O. Knop, J.B. Macdonald, Solid State Commun. 56, 581 (1985)ADSCrossRefGoogle Scholar
  35. 35.
    E. Mosconi, C. Quarti, T. Ivanovska, G. Ruani, F. De Angelis, Phys. Chem. Chem. Phys. 16, 16137 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Mattoni, A. Filippetti, M.I. Saba, P. Delugas, J. Phys. Chem. C 119, 17421 (2015)CrossRefGoogle Scholar
  37. 37.
    A.M.A. Leguy, J.M. Frost, A.P. McMahon, V.G. Sakai, W. Kochelmann, C. Law, X. Li, F. Foglia, A. Walsh, B.C. O’Regan, J. Nelson, J.T. Cabral, R.F. Barnes, Nat. Commun. 6, 7124 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    M.A. Carignano, A. Kachmar, J. Phys. Chem. C 119, 8991 (2015)CrossRefGoogle Scholar
  39. 39.
    A.A. Bakulin, O. Selig, H.J. Bakker, Y.L.A. Rezus, C. Müller, T. Glaser, R. Lovrincic, Z. Sun, Z. Chen, A. Walsh, J.M. Frost, T.L.C. Jansen, J. Phys. Chem. Lett. 6, 3663 (2015)CrossRefGoogle Scholar
  40. 40.
    M.A. Carignano, Y. Saeed, S.A. Aravindh, I.S. Roqan, J. Even, C. Katan, Phys. Chem. Chem. Phys. 18, 27109 (2016)CrossRefGoogle Scholar
  41. 41.
    M.R. Filip, G.E. Eperon, H.J. Snaith, F. Giustino, Nat. Commun. 5, 5757 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    J. Kim, S.-C. Lee, S.-H. Lee, K.-H. Hong, J. Phys. Chem. C 119, 4627 (2015)CrossRefGoogle Scholar
  43. 43.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Science 342, 344 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, Energy Environ. Sci. 7, 399 (2014)CrossRefGoogle Scholar
  45. 45.
    S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014)CrossRefGoogle Scholar
  46. 46.
    G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, S. Dharani, M. Grätzel, S. Mhaisalkar, T.C. Sum, Nat. Mater. 13, 476 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Nat. Photon. 9, 106 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    J.M. Ball, S.D. Stranks, M.T. Hörantner, S. Hüttner, W. Zhang, E.J.W. Crossland, I. Ramirez, M. Riede, M.B. Johnston, R.H. Friend, H.J. Snaith, Energy Environ. Sci. 8, 602 (2015)CrossRefGoogle Scholar
  49. 49.
    P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, C. Ballif, J. Phys. Chem. Lett. 6, 66 (2015)CrossRefGoogle Scholar
  50. 50.
    Y. Jiang, M.A. Green, R. Sheng, A. Ho-Baillie, Sol. Eng. Mater. Sol. Cells 137, 253 (2015)CrossRefGoogle Scholar
  51. 51.
    A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, P.R.F. Barnes, Chem. Mater. 27, 3397 (2015)CrossRefGoogle Scholar
  52. 52.
    A.M.A. Leguy, P. Azarhoosh, M.I. Alonso, M. Campoy-Quiles, O.J. Weber, J. Yao, D. Bryant, M.T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, P.R.F. Barnes, Nanoscale 8, 6317 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    T. Miyadera, T. Sugita, H. Tampo, K. Matsubara, M. Chikamatsu, A.C.S. Appl, Mater. Interfaces. 8, 26013 (2016)CrossRefGoogle Scholar
  54. 54.
    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Nano Lett. 13, 1764 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    G. Niu, X. Guo, L. Wang, J. Mater. Chem. A 3, 8970 (2015)CrossRefGoogle Scholar
  56. 56.
    T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, H.J. Snaith, Adv. Energy Mater. 5, 1500963 (2015)CrossRefGoogle Scholar
  57. 57.
    G. Murugadoss, S. Tanaka, G. Mizuta, S. Kanaya, H. Nishino, T. Umeyama, H. Imahori, S. Ito, Jpn. J. Appl. Phys. 54, 08KF08 (2015)CrossRefGoogle Scholar
  58. 58.
    T.A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A.A. Dubale, B.-J. Hwang, Energy Environ. Sci. 9, 323 (2016)CrossRefGoogle Scholar
  59. 59.
    M. Shirayama, M. Kato, T. Miyadera, T. Sugita, T. Fujiseki, S. Hara, H. Kadowaki, D. Murata, M. Chikamatsu, H. Fujiwara, J. Appl. Phys. 119, 115501 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    H. Fujiwara, J. Koh, P.I. Rovira, R.W. Collins, Phys. Rev. B 61, 10832 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, West Sussex, 2007)CrossRefGoogle Scholar
  62. 62.
    N. Kitazawa, Y. Watanabe, Y. Nakamura, J. Mater. Sci. 37, 3585 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    W.-J. Yin, T. Shi, Y. Yan, Adv. Mater. 26, 4653 (2014)CrossRefGoogle Scholar
  64. 64.
    W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, S.-H. Wei, J. Mater. Chem. A 3, 8926 (2015)CrossRefGoogle Scholar
  65. 65.
    J. Bordas, J. Robertson, A. Jakobsson, J. Phys. C 11, 2607 (1978)ADSCrossRefGoogle Scholar
  66. 66.
    E. Doni, G. Grosso, G. Harbeke, E. Meier, E. Tosatti, Phys. Stat. Sol. (b) 68, 569 (1975)ADSCrossRefGoogle Scholar
  67. 67.
    Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, Appl. Phys. Express 7, 032302 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    A. Binek, F.C. Hanusch, P. Docampo, T. Bein, J. Phys. Chem. Lett. 6, 1249 (2015)CrossRefGoogle Scholar
  69. 69.
    F. Hao, C.C. Stoumpos, Z. Liu, R.P.H. Chang, M.G. Kanatzidis, J. Am. Chem. Soc. 136, 16411 (2014)CrossRefGoogle Scholar
  70. 70.
    O.N. Yunakova, V.K. Miloslavskii, E.N. Kovalenko, Opt. Spectrosc. 112, 91 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, IEEE J. Photovolt. 5, 401 (2015)CrossRefGoogle Scholar
  72. 72.
    A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J. Snaith, R.J. Nicholas, Nat. Phys. 11, 582 (2015)CrossRefGoogle Scholar
  73. 73.
    E. Mosconi, A. Amat, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, J. Phys. Chem. C 117, 13902 (2013)CrossRefGoogle Scholar
  74. 74.
    F. Brivio, A.B. Walker, A. Walsh, APL Mater. 1, 042111 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    T. Umebayashi, K. Asai, T. Kondo, A. Nakao, Phys. Rev. B 67, 155405 (2003)ADSCrossRefGoogle Scholar
  76. 76.
    D. Li, J. Meng, Y. Niu, H. Zhao, C. Liang, Chem. Phys. Lett. 627, 13 (2015)ADSCrossRefGoogle Scholar
  77. 77.
    H. Fujiwara, S. Fujimoto, M. Tamakoshi, M. Kato, H. Kadowaki, T. Miyadera, H. Tampo, M. Chikamatsu, H. Shibata, Appl. Surf. Sci. 421, 276 (2017)Google Scholar
  78. 78.
    M.P. Marder, Condensed Matter Physics (Wiley, Hoboken, 2010)CrossRefGoogle Scholar
  79. 79.
    J. Even, L. Pedesseau, J.-M. Jancu, C. Katan, J. Phys. Chem. Lett. 4, 2999 (2013)CrossRefGoogle Scholar
  80. 80.
    P. Umari, E. Mosconi, F. De Angelis, Sci. Rep. 4, 4467 (2014)CrossRefGoogle Scholar
  81. 81.
    F. Brivio, K.T. Butler, A. Walsh, M. van Schilfgaarde, Phys. Rev. B 89, 155204 (2014)ADSCrossRefGoogle Scholar
  82. 82.
    E. Menéndez-Proupin, P. Palacios, P. Wahnón, J.C. Conesa, Phys. Rev. B 90, 045207 (2014)ADSCrossRefGoogle Scholar
  83. 83.
    M. Marsman, J. Paier, A. Stroppa, G. Kresse, J. Phys. Condens. Matter 20, 064201 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    C. Quarti, E. Mosconi, F. De Angelis, Chem. Mater. 26, 6557 (2014)CrossRefGoogle Scholar
  85. 85.
    C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, S. Sanvito, Nat. Commun. 6, 7026 (2015)ADSCrossRefGoogle Scholar
  86. 86.
    C. Motta, F. El-Mellouhi, S. Sanvito, Phys. Rev. B 93, 235412 (2016)ADSCrossRefGoogle Scholar
  87. 87.
    A. Nakane, H. Tampo, M. Tamakoshi, S. Fujimoto, K.M. Kim, S. Kim, H. Shibata, S. Niki, H. Fujiwara, J. Appl. Phys. 120, 064505 (2016)ADSCrossRefGoogle Scholar
  88. 88.
    J.H. Heo, D.H. Song, H.J. Han, S.Y. Kim, J.H. Kim, D. Kim, H.W. Shin, T.K. Ahn, C. Wolf, T.-W. Lee, S.H. Im, Adv. Mater. 27, 3424 (2015)CrossRefGoogle Scholar
  89. 89.
    J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, X. Xu, H. Wu, D. Li, Y. Luo, Q. Meng, Appl. Phys. Lett. 104, 063901 (2014)ADSCrossRefGoogle Scholar
  90. 90.
    L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, MdK Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 134, 17396 (2012)CrossRefGoogle Scholar
  91. 91.
    H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, T. Ma, J. Phys. Chem. Lett. 5, 3241 (2014)CrossRefGoogle Scholar
  92. 92.
    W. Tress, N. Marinova, O. Inganäs, M.K. Nazeeruddin, S.M. Zakeeruddin, M. Graetzel, Adv. Energy Mater. 5, 1400812 (2014)CrossRefGoogle Scholar
  93. 93.
    A.R.B.M. Yuoff, M.K. Nazeeruddin, J. Phys. Chem. Lett. 7, 851 (2016)CrossRefGoogle Scholar
  94. 94.
    E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, D. Cahen, Nano Lett. 14, 1000 (2014)ADSCrossRefGoogle Scholar
  95. 95.
    V.W. Bergmann, S.A.L. Weber, F.J. Ramos, M.K. Nazeeruddin, M. Grätzel, D. Li, A.L. Domanski, I. Lieberwirth, S. Ahmad, R. Berger, Nat. Commun. 5, 5001 (2014)CrossRefGoogle Scholar
  96. 96.
    W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, Energy Environ. Sci. 8, 995 (2015)CrossRefGoogle Scholar
  97. 97.
    Y. Zhang, M. Liu, G.E. Eperon, T.C. Leijtens, D. McMeekin, M. Saliba, W. Zhang, M. de Bastiani, A. Petrozza, L.M. Herz, M.B. Johnston, H. Lin, H.J. Snaith, Mater. Horiz. 2, 315 (2015)CrossRefGoogle Scholar
  98. 98.
    E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, D. Cahen, Nat. Commun. 5, 3461 (2014)ADSCrossRefGoogle Scholar
  99. 99.
    Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, J. Huang, Appl. Phys. Lett. 105, 163508 (2014)ADSCrossRefGoogle Scholar
  100. 100.
    E.J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, J. Phys. Chem. Lett. 5, 680 (2014)CrossRefGoogle Scholar
  101. 101.
    W.-J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 104, 063903 (2014)ADSCrossRefGoogle Scholar
  102. 102.
    J. Kim, S.-H. Lee, J.H. Lee, K.-H. Hong, J. Phys. Chem. Lett. 5, 1312 (2014)CrossRefGoogle Scholar
  103. 103.
    M.L. Agiorgousis, Y.-Y. Sun, H. Zeng, S. Zhang, J. Am. Chem. Soc. 136, 14570 (2014)CrossRefGoogle Scholar
  104. 104.
    Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, Y. Yang, Nano Lett. 14, 4158 (2014)ADSCrossRefGoogle Scholar
  105. 105.
    H.D. Kim, H. Ohkita, H. Benten, S. Ito, Adv. Mater. 28, 917 (2016)CrossRefGoogle Scholar
  106. 106.
    K. Ghimire, A. Cimaroli, F. Hong, T. Shi, N. Podraza, Y. Yan, in Proceedings of the 42nd Photovoltaic Specialists Conference (2015) p. 1Google Scholar
  107. 107.
    K. Ghimire, D. Zhao, A. Cimaroli, W. Ke, Y. Yan, N.J. Podraza, J. Phys. D 49, 405102 (2016)CrossRefGoogle Scholar
  108. 108.
    L. Karki Gautam, H. Haneef, M.M. Junda, D. B. Saint John, N. J. Podraza Thin Solid Films 571, 548 (2014)ADSCrossRefGoogle Scholar
  109. 109.
    K. Ghimire, D. Zhao, A. Cimaroli, W. Ke, M. Junda, Y. Yan, N. Podraza, in Proceedings of the 43rd Photovoltaic Specialists Conference (2016) p. 89Google Scholar
  110. 110.
    Z. Song, S.C. Watthage, A.B. Phillips, B.L. Tompkins, R.J. Ellingson, M.J. Heben, Chem. Mater. 27, 4612 (2015)CrossRefGoogle Scholar
  111. 111.
    P. Docampo, T. Bein, Acc. Chem. Res. 49, 339 (2016)CrossRefGoogle Scholar
  112. 112.
    C. Müller, T. Glaser, M. Plogmeyer, M. Sendner, S. Döring, A.A. Bakulin, C. Brzuska, R. Scheer, M.S. Pshenichnikov, W. Kowalsky, A. Pucci, R. Lovrinčić, Chem. Mater. 27, 7835 (2015)CrossRefGoogle Scholar
  113. 113.
    I. Deretzis, A. Alberti, G. Pellegrino, E. Smecca, F. Giannazzo, N. Sakai, T. Miyasaka, A. La Magna, Appl. Phys. Lett. 106, 131904 (2015)ADSCrossRefGoogle Scholar
  114. 114.
    F. Matsumoto, S.M. Vorpahl, J.Q. Banks, E. Sengupta, D.S. Ginger, J. Phys. Chem. C 119, 20810 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hiroyuki Fujiwara
    • 1
    Email author
  • Nikolas J. Podraza
    • 2
  • Maria Isabel Alonso
    • 3
  • Masato Kato
    • 1
  • Kiran Ghimire
    • 2
  • Tetsuhiko Miyadera
    • 4
  • Masayuki Chikamatsu
    • 4
  1. 1.Gifu UniversityGifuJapan
  2. 2.University of ToledoToledoUSA
  3. 3.Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)BellaterraSpain
  4. 4.Research Center for Photovoltaics, National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations