Advertisement

Cu2ZnSn(S,Se)4 and Related Materials

  • Sukgeun Choi
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 212)

Abstract

Cu2ZnSn(S,Se)4 and related multinary compounds in the kesterite crystal structure are considered promising light-absorbing materials for thin-film photovoltaic (PV) device technology because of their earth abundance, desired opto-electronic properties, and non-toxic nature of constituent elements. In the past few years, spectroscopic ellipsometry (SE) has been applied to characterize the optical functions and related physical properties of this new class of PV absorber materials. This chapter presents SE-determined optical function spectra of Cu2ZnSn(S,Se)4 and related compounds and discusses associated scientific and technical issues. Detailed information on the measurement strategies is also provided, so that interested readers can adopt the same methods for their own studies.

Notes

Acknowledgements

The author acknowledges Jian Li (Univ. of Toledo) for his critical contributions to the development of the pseudobulk method and Ingrid Repins (NREL) for valuable discussions on kesterite solar cell technology as well as providing Cu2ZnSnSe4, Cu2ZnGeSe4, and Cu2SnSe3 thin film samples. Suhuai Wei (Beijing Computation Science Research Center, China) is acknowledged for discussions on the electronic structure of kesterite-phase compounds. Figure 12.1 was prepared by Ji-Sang Park (Imperial College London, UK) and the energy band structure of Cu2ZnSnSe4 shown in Fig. 12.3 was provided by Hanyue Zhao and Clas Persson (Univ. of Oslo, Norway). The author thanks David Aspnes (North Carolina State Univ.) for helpful discussions on surface preparations and Lynn Gedvilas (Colorado School of Mines) for technical editing.

References

  1. 1.
    See for example, Copper Zinc Tin Sulfide-Based Thin Film Solar Cells, ed. by K. Ito (Wiley, Chichester, UK, 2015)Google Scholar
  2. 2.
    K. Ito, T. Nakazawa, Jpn. J. Appl. Phys. 27, 2094 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    T.M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, H.W. Schock, Proceedings of the 14th European Conference of Photovoltatic Science and Engineering and Exhibition (Bedford, UK, 1997), p. 1242Google Scholar
  4. 4.
    K. Todorov, K.B. Reuter, D.B. Mitzi, Adv. Mater. 22, E156 (2010)CrossRefGoogle Scholar
  5. 5.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Mater. 4, 1301465 (2014)Google Scholar
  6. 6.
    S. Chen, X.G. Gong, A. Walsh, S.-H. Wei, Appl. Phys. Lett. 94, 041903 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    C. Persson, J. Appl. Phys. 107, 053710 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    G. Rey, A. Redinger, J. Sendler, T.P. Weiss, M. Thevenin, M. Guennou, B. El Adib, S. Siebentritt, Appl. Phys. Lett. 105, 112106 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    S.G. Choi, H.Y. Zhao, C. Persson, C.L. Perkins, A.L. Donohue, B. To, A.G. Norman, J. Li, I.L. Repins, J. Appl. Phys. 111, 033506 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    S. Schorr, Sol. Energy Mater. Sol. Cells 95, 1482 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    T. Washio, H. Nozaki, T. Fukano, T. Motohiro, K. Jimbo, H. Katagiri, J. Appl. Phys. 110, 074511 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    T. Gokmen, O. Gunawan, T.K. Todorov, D.B. Mitzi, Appl. Phys. Lett. 103, 103506 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    For example, see S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, J.H. Yun, Appl. Phys. Lett. 97, 021905 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    S.G. Choi, T.J. Kim, S.Y. Hwang, J. Li, C. Persson, Y.D. Kim, S.-H. Wei, I.L. Repins, Sol. Energy Mater. Sol. Cells 130, 375 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Crovetto, A. Cazzaniga, R.B. Ettlinger, J. Schou, O. Hansen, Thin Solid Films 582, 203 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    M. León, S. Levcenko, R. Serna, A. Nateprov, G. Gurieva, J.M. Merino, S. Schorr, E. Arushanov, Mater. Chem. Phys. 141, 58 (2013)CrossRefGoogle Scholar
  17. 17.
    A.P. Litvinchuk, Phys. Status Solidi B.  https://doi.org/10.1002/pssb.201552415 (in press)ADSCrossRefGoogle Scholar
  18. 18.
    S. Adachi, Copper Zinc Tin Sulfide-based Thin Film Solar Cells, ed. by K. Ito (Wiley, Chichester, UK, 2015) Chap. 7Google Scholar
  19. 19.
    C. Persson, R. Chen, H. Zhao, M. Kumar, D. Huang, Copper Zinc Tin Sulfide-based Thin Film Solar Cells, ed. by K. Ito (Wiley, Chichester, UK, 2015) Chap. 4Google Scholar
  20. 20.
    B.G. Lee, S. Li, G. von Gastrow, M. Yli-Koski, H. Savin, V. Malinen, J. Skarp, S. Choi, H.M. Branz, Thin Solid Films 550, 541 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    M.A. Steiner, J.F. Geisz, I. García, D.J. Friedman, A. Duda, S.R. Kurtz, J. Appl. Phys. 113, 123109 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    M. Law, M.C. Beard, S. Choi, J.M. Luther, M.C. Hanna, A.J. Nozik, Nano Lett. 8, 3904 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, H. Fujiwara, Phys. Rev. Appl. 2, 034012 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    J.-S. Park, S. Choi, Y. Yan, Y. Yang, J.M. Luther, S.-H. Wei, P. Parilla, K. Zhu, J. Phys. Chem. Lett. 6, 4304 (2015)CrossRefGoogle Scholar
  25. 25.
    R.A. Synowicki, Phys. Status Solidi (c) 5, 1085 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    J.N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S.M. Smith, J.H. Baker, H.G. Tompkins, Thin Solid Films 516, 7979 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    G.E. Jellison Jr., L.A. Boatner, D.H. Lowndes, R.A. McKee, M. Godbole, Appl. Opt. 33, 6053 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    D.E. Aspnes, A.A. Studna, Appl. Phys. Lett. 39, 316 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    S. Ozaki, T. Namba, Phys. Status Solidi C 9, 2403 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    M. León, S. Levcenko, R. Serna, I.V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J.M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, E. Arushanov, Appl. Phys. Lett. 105, 061909 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Hirate, H. Tampo, S. Minoura, H. Kadowaki, A. Nakane, K.M. Kim, H. Shibata, S. Niki, H. Fujiwara, J. Appl. Phys. 117, 015702 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    A. Savitzky, M.J.E. Golay, Anal. Chem. 36, 1627 (1964)ADSCrossRefGoogle Scholar
  33. 33.
    M. Cardona, Modulation Spectroscopy, Suppl. 11 of Solid State Physics (Academic, New York, 1969), p. 119Google Scholar
  34. 34.
    D.E. Aspnes, Handbook of Semiconductors, ed. by M. Balkanski, vol. 2 (North-Holland, Amsterdam, 1980), p. 109Google Scholar
  35. 35.
    M. Cardona, M.L.W. Thewalt, Rev. Mod. Phys. 77, 1173 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    R. Pässler, J. Appl. Phys. 89, 6235 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    J.C. Phillips, G. Lukovsky, Bonds and Bands in Semiconductors, 2nd edn. (Momentum Press, New York, 2009)Google Scholar
  38. 38.
    S.G. Choi, R. Chen, C. Persson, T.J. Kim, S.Y. Hwang, Y.D. Kim, L.M. Mansfield, Appl. Phys. Lett. 101, 261903 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    J. Krustok, T. Raadik, M. Grossberg, S. Giraldo, M. Neuschitzer, S. López-Marino, E. Saucedo, Mater. Sci. Semicond. Process. 39, 251 (2015)CrossRefGoogle Scholar
  40. 40.
    S. Levcenko, G. Gurieva, M. Guc, A. Nateprov, Mold. J. Phys. Sci. 8, 173 (2009)Google Scholar
  41. 41.
    S. Adachi, T. Taguchi, Phys. Rev. B 43, 9569 (1991)ADSCrossRefGoogle Scholar
  42. 42.
    J. Li, H. Du, J. Yarbrough, A. Norman, K. Jones, G. Teeter, F.L.J. Terry, D. Levi, Opt. Exp. 20, A327 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    W. Li, K. Jiang, J. Zhang, X. Chen, Z. Hu, S. Chen, L. Sun, J. Chu, Phys. Chem. Chem. Phys. 14, 9936 (2012)CrossRefGoogle Scholar
  44. 44.
    A. Meeder, A. Jäger-Waldau, V. Tezlevan, E. Arushanov, T. Schedel-Niedrig, MCh. Lux-Steiner, J. Phys. 15, 6219 (2003)Google Scholar
  45. 45.
    J. Bhosale, A.K. Ramdas, A. Burger, A. Muñoz, A.H. Romero, M. Cardona, R. Lauck, R.K. Kremer, Phys. Rev. B 86, 195208 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, S. Guha, Adv. Energy Mater. 5, 1401372 (2015)CrossRefGoogle Scholar
  47. 47.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Prog. Photovolt. Res. Appl. 25, 3 (2017)Google Scholar
  48. 48.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)ADSCrossRefGoogle Scholar
  49. 49.
    S.G. Choi, J.-S. Park, A.L. Donohue, S.T. Christensen, B. To, C. Beall, S.-H. Wei, I.L. Repins, Phys. Rev. Appl. 4, 054006 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    S. Chen, X.G. Gong, A. Walsh, S.-H. Wei, Phys. Rev. B 79, 165211 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    Y.W. Jung, T.H. Ghong, Y.D. Kim, D.E. Aspnes, Appl. Phys. Lett. 91, 121903 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    K.M. Kim, H. Tampo, H. Shibata, S. Niki, Thin Solid Films 536, 111 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    M. Ahmadi, S.S. Pramana, S.K. Batabyal, C. Boothroyd, S.G. Mhaisalkar, Y.M. Lam, Inorg. Chem. 52, 1722 (2013)CrossRefGoogle Scholar
  54. 54.
    G. Marcano, C. Rincón, L.M. de Chalbaud, D.B. Bracho, G. Sánchez, Pérez. J. Appl. Phys. 90, 1847 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    Y.-T. Zhai, S. Chen, J.-H. Yang, H.-J. Xiang, X.-G. Gong, A. Walsh, J. Kang, S.-H. Wei, Phys. Rev. B 84, 075213 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    L. Xi, Y.B. Zhang, X.Y. Shi, J. Yang, X. Shi, L.D. Chen, W. Zhang, J. Yang, D.J. Singh, Phys. Rev. B 86, 155201 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    S.G. Choi, J. Kang, J. Li, H. Haneef, N.J. Podraza, C. Beall, S.-H. Wei, S.T. Christensen, I.L. Repins, Appl. Phys. Lett. 106, 043902 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    D. Tiwari, T.K. Chaudhuri, A.I.P. Conf, Proc. 1349, 1295 (2011)Google Scholar
  59. 59.
    D.M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, P.J. Dale, Thin Solid Films 520, 6291 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations