Advertisement

Prehypertension, the Risk of Hypertension and Events

  • Michael Doumas
  • Niki Katsiki
  • Dimitri P. Mikhailidis
Chapter
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)

Abstract

Prehypertension is a precursor of hypertension in a high proportion of individuals. Several factors may predispose to the development of prehypertension including uric acid, dietary salt intake, arterial stiffness, autonomic imbalance, obesity, and subclinical inflammation.

Progression of prehypertension to hypertension has been associated with visceral abdominal fat, sympathetic overactivity, sympathovagal imbalance, endothelial dysfunction, impairment of coronary flow reserve, and metabolic syndrome. Age, gender, ethnicity, and baseline blood pressure may also affect the incidence of hypertension.

Prehypertension is associated with increased risk for coronary heart disease, stroke, chronic kidney disease, and cardiovascular death, but not all-cause mortality. Lifestyle measures and antihypertensive drugs may delay or even prevent the progression of prehypertension to hypertension.

Keywords

Prehypertension Hypertension Antihypertensive drugs Cardiovascular morbidity Cardiovascular mortality All-cause death Chronic kidney disease 

Notes

Declaration of Interest

This review was written independently; no company or institution supported the authors financially or by providing a professional writer. M.D. received honoraria from Menarini, WinMedica, Bayer, Boehringer, Merck, and Unipharma. N.K. has given talks, attended conferences, and participated in trials sponsored by Amgen, Angelini, Astra Zeneca, Boehringer Ingelheim, Galenica, MSD, Novartis, Novo Nordisk, Sanofi, and WinMedica. D.P.M. has given talks and attended conferences sponsored by MSD, AstraZeneca, and Libytec.

References

  1. 1.
    Orth J. On the morphology of carcinoma and the parasitic theory of its etiology. Ann Surg. 1904;40:773–81.CrossRefGoogle Scholar
  2. 2.
    Levin I. Changes in the tissue surrounding a growing tumor and the significance of the precancerous state. J Exp Med. 1912;16:149–54.CrossRefGoogle Scholar
  3. 3.
    Rodman WL. Cancer and precancerous conditions. Ann Surg. 1914;59:47–64.CrossRefGoogle Scholar
  4. 4.
    Robinson SC, Brucer M. Range of normal blood pressure: a statistical and clinical study of 11,383 persons. Arch Intern Med. 1939;64:409–44.CrossRefGoogle Scholar
  5. 5.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Seventh report of the Joint National Committee on prevention, evaluation, and treatment of high blood pressure. Hypertension. 2003;42:1206–52.CrossRefGoogle Scholar
  6. 6.
    Lewington S, Clarke R, Qizibash N, Peto R, Collins R. Age specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.CrossRefGoogle Scholar
  7. 7.
    Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res. 2015;116:1007–21.CrossRefGoogle Scholar
  8. 8.
    Vasan RS, Beiser A, Seshadri S, Larson MG, Kannel WB, D’Agostino RB, et al. Residual lifetime risk for developing hypertension in middle-aged women and men. The Framingham Heart Study. JAMA. 2002;287:1003–10.CrossRefGoogle Scholar
  9. 9.
    Leitschuh M, Cupples A, Kannel W, Gagnon D, Chobanian A. High-normal blood pressure progression to hypertension in the Framingham Heart Study. Hypertension. 1991;17:22–7.CrossRefGoogle Scholar
  10. 10.
    Vasan RS, Larson MG, Leip EP, Kannel WB, Levy D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study. Lancet. 2001;358:1682–6.CrossRefGoogle Scholar
  11. 11.
    Winegarden CR. From prehypertension to hypertension? Additional evidence. Ann Epidemiol. 2005;15:720–5.CrossRefGoogle Scholar
  12. 12.
    Selassie A, Wagner S, Laken ML, Ferguson L, Ferdinand K, Egan BM. Progression is accelerated from prehypertension to hypertension in blacks. Hypertension. 2011;58:579–87.CrossRefGoogle Scholar
  13. 13.
    Gu D, Wildman RP, Wu X, Reynolds K, Huang J, Chen CS, et al. Incidence and predictors of hypertension over 8 years among Chinese men and women. J Hypertens. 2007;25:517–23.CrossRefGoogle Scholar
  14. 14.
    Zheng L, Sun Z, Zhang X, Xu C, Li J, Li M, et al. Risk of progression to hypertension across baseline blood pressure in nonhypertensive participants among rural Chinese adults: a prospective study. J Hypertens. 2010;28:1158–65.PubMedGoogle Scholar
  15. 15.
    Zheng L, Sun Z, Zhang X, Xu C, Li J, Hu D, et al. Predictors of progression from prehypertension to hypertension among rural Chinese adults: results from Liaoning Province. Eur J Cardiovasc Prev Rehabil. 2010;17:217–22.CrossRefGoogle Scholar
  16. 16.
    Sun Z, Zheng L, Detrano R, Zhang X, Xu C, Li J, et al. Incidence and predictors of hypertension among rural Chinese adults: results from Liaoning Province. Ann Fam Med. 2010;8:19–24.CrossRefGoogle Scholar
  17. 17.
    Sun Z, Zheng L, Detrano R, Zhang X, Xu C, Li J, et al. Risk of progression to hypertension in a rural Chinese women population with prehypertension and normal blood pressure. Am J Hypertens. 2010;23:627–32.CrossRefGoogle Scholar
  18. 18.
    Kurioka S, Horie S, Inoue A, Mafune K, Tsuda Y, Otsuji Y. Risk of progression to hypertension in nonhypertensive Japanese workers aged 20–64 years. J Hypertens. 2014;32:236–44.CrossRefGoogle Scholar
  19. 19.
    Conen D, Ridker PM, Buring JE, Glynn RJ. Risk of cardiovascular events among women with high normal blood pressure or blood pressure progression: prospective cohort study. BMJ. 2007;335:432.CrossRefGoogle Scholar
  20. 20.
    Faselis C, Doumas M, Kokkinos JP, Panagiotakos D, Kheirbek R, Sheriff HM, et al. Exercise capacity and progression from prehypertension to hypertension. Hypertension. 2012;60:333–8.CrossRefGoogle Scholar
  21. 21.
    Redwine KM, Acosta AA, Poffenbarger T, Portman RJ, Samuels J. Development of hypertension in adolescents with prehypertension. J Pediatr. 2012;160:98–103.CrossRefGoogle Scholar
  22. 22.
    The Trials of Hypertension Prevention Collaborative Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention Phase II. Arch Intern Med. 1997;57:657–67.Google Scholar
  23. 23.
    Stamler R, Stamler J, Gosch FC, Civinelli J, Fishman J, McKeever P, et al. Primary prevention of hypertension by nutritional-hygienic means. Final report of a randomized, controlled trial. JAMA. 1989;262:1801–7.CrossRefGoogle Scholar
  24. 24.
    Hypertension Prevention Trial Research Group. The Hypertension Prevention Trial: three-year effects of dietary changes on blood pressure. Arch Intern Med. 1990;150:153–62.CrossRefGoogle Scholar
  25. 25.
    Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, et al. Feasibility of treating prehypertension with an angiotensin receptor blocker. N Engl J Med. 2006;354:1685–97.CrossRefGoogle Scholar
  26. 26.
    Lüders S, Schrader J, Berger J, Unger T, Zidek W, Böhm M, et al; PHARAO Study Group. The PHARAO Study: prevention of hypertension with the angiotensin-converting enzyme inhibitor ramipril in patients with high-normal blood pressure—a prospective, randomized, controlled prevention trial of the German Hypertension League. J Hypertens. 2008;26:1487–96.Google Scholar
  27. 27.
    Fuchs SC, Poli-de-Figueiredo CE, Figueiredo Neto JA, Scala LC, Whelton PK, Mosele F, et al. Effectiveness of chlorthalidone plus amiloride for the prevention of hypertension: the PREVER-Prevention randomized clinical trial. J Am Heart Assoc. 2016;5:e004248.CrossRefGoogle Scholar
  28. 28.
    Rizzo M, Pbradovic M, Labudovic-Borovic M, Nikolic D, Montalto G, Rizvi AA, et al. Uric acid metabolism in prehypertension and the metabolic syndrome. Curr Vasc Pharmacol. 2014;12:572–85.CrossRefGoogle Scholar
  29. 29.
    Jiang M, Gong D, Fan Y. Serum uric acid levels and risk of prehypertension: a meta-analysis. Clin Chem Lab Med. 2017l;55:314–21.CrossRefGoogle Scholar
  30. 30.
    Liu L, Gu Y, Li C, Zhang Q, Meng G, Wu H, et al. Serum uric acid is an independent predictor for developing prehypertension: a population-based prospective cohort study. J Hum Hypertens. 2017;31:116–20.CrossRefGoogle Scholar
  31. 31.
    Zhao X, Yang X, Zhang X, Li Y, Zhao X, Ren L, et al. Dietary salt intake and coronary atherosclerosis in patients with prehypertension. J Clin Hypertens. 2014;16:575–80.CrossRefGoogle Scholar
  32. 32.
    Tomiyama H, Yamashina A. Arterial stiffness in prehypertension: a possible vicious cycle. J Cardiovasc Transl Res. 2012;5:280–6.CrossRefGoogle Scholar
  33. 33.
    Davis JT, Rao F, Naqshbandi D, Fung MM, Zhang K, Schork AJ, et al. Autonomic and hemodynamic origins of prehypertension. J Am Coll Cardiol. 2012;59:2206–16.CrossRefGoogle Scholar
  34. 34.
    Pal GK, Pal P, Nanda N, Amudharaj D, Adithan C. Cardiovascular dysfunctions and sympathovagal imbalance in hypertension and prehypertension: physiological perspectives. Futur Cardiol. 2013;9:53–69.CrossRefGoogle Scholar
  35. 35.
    Martín-Espinosa N, Díez-Fernández A, Sánchez-López M, Rivero-Merino I, Lucas-De La Cruz L, Solera-Martínez M, et al. Movi-Kids Group. Prevalence of high blood pressure and association with obesity in Spanish schoolchildren aged 4-6 years old. PLoS One. 2017;12:e0170926.CrossRefGoogle Scholar
  36. 36.
    Senthil S, Krishndasa SN. Prehypertension in apparently healthy young adults: incidence and influence of hemoglobin level. J Clin Diagn Res. 2015;9:10–2.Google Scholar
  37. 37.
    Nandeesha H, Bobby Z, Selvaraj N, Rajappa M. Prehypertension: is it an inflammatory state? Clin Chim Acta. 2015;451:338–42.CrossRefGoogle Scholar
  38. 38.
    Hwang YC, Fujimoto WY, Kahn SE, Leonetti DL, Boyko EJ. Greater visceral abdominal fat is associated with a lower probability of conversion of prehypertension to normotension. J Hypertens. 2017;35:1213–8.CrossRefGoogle Scholar
  39. 39.
    Hering D, Kara T, Kucharska W, Somers VK, Narkiewicz K. Longitudinal tracking of muscle sympathetic nerve activity and its relationship with blood pressure in subjects with prehypertension. Blood Press. 2016;25:184–92.CrossRefGoogle Scholar
  40. 40.
    Millgard J, Hägg A, Sarabi M, Lind L. Endothelium-dependent vasodilation in normotensive subjects with a familial history of essential hypertension and in young subjects with borderline hypertension. Blood Press. 2002;11:279–84.CrossRefGoogle Scholar
  41. 41.
    Erdogan D, Ozaydin M, Icli A, Gonul E, Yucel H, Arslan A, et al. Echocardiographic predictors of progression from prehypertension to hypertension. J Hypertens. 2012;30:1639–45.CrossRefGoogle Scholar
  42. 42.
    Palombo C, Kozakova M, Magagna A, Bigalli G, Morizzo C, Ghiadoni L, et al. Early impairment of coronary flow reserve and increase in minimum coronary resistance in borderline hypertensive patients. J Hypertens. 2010;18:453–9.CrossRefGoogle Scholar
  43. 43.
    Katsiki N, Doumas M, Athyros VG, Karagiannis A. Prehypertension and the cardiometabolic syndrome: targeting several risk factors to achieve maximum benefit. Expert Rev Cardiovasc Ther. 2014;12:295–6.CrossRefGoogle Scholar
  44. 44.
    Jung MH, Ihm SH, Lee DH, Chung WB, Jung HO, Youn HJ. Prehypertension is associated with early complications of atherosclerosis but not with exercise capacity. Int J Cardiol. 2017;227:387–92.CrossRefGoogle Scholar
  45. 45.
    Mousa TM, Akinseye OA, Berekashvili K, Akinboboye OO. Correlation of prehypertension with left ventricular mass assessed by magnetic resonance imaging. Int J Hypertens. 2015;2015, Article no. 742658.Google Scholar
  46. 46.
    Oyama J, Node K. Prevalence of prehypertension and left ventricular hypertrophy. Hypertens Res. 2017;40:544–5.CrossRefGoogle Scholar
  47. 47.
    Markus MR, Stritzke J, Lieb W, Mayer B, Luchner A, Döring A, et al. Implications of persistent prehypertension for ageing related changes in left ventricular geometry and function: the MONICA/KORA Augsburg study. J Hypertens. 2008;26:2040–9.CrossRefGoogle Scholar
  48. 48.
    Jung JY, Park SK, Oh CM, Kang JG, Choi JM, Ryoo JH, et al. The influence of prehypertension, controlled and uncontrolled hypertension on left ventricular diastolic function and structure in the general Korean population. Hypertens Res. 2017;40:606–12.CrossRefGoogle Scholar
  49. 49.
    Jang SY, Kim S, Lee CK, Cho EJ, Cho SJ, Lee SC. Prehypertension and left ventricular diastolic dysfunction in middle-aged Koreans. Korean Circ J. 2016;46:536–41.CrossRefGoogle Scholar
  50. 50.
    Santos AB, Gupta DK, Bello NA, Gori M, Claggett B, Fuchs FD, et al. Prehypertension is associated with abnormalities of cardiac structure and function in the Atherosclerosis Risk in Communities Study. Am J Hypertens. 2016;29:568–74.CrossRefGoogle Scholar
  51. 51.
    Lehmann N, Erbel R, Mahabadi AA, Kälsch H, Möhlenkamp S, Moebus S, et al. Accelerated progression of coronary artery calcification in hypertension but also prehypertension. J Hypertens. 2016;34:2233–42.CrossRefGoogle Scholar
  52. 52.
    Pletcher M, Bibbins-Domingo K, Lewis CE, Wei GS, Sidney S, Carr JJ, et al. Prehypertension during young adulthood and coronary calcium later in life. Ann Intern Med. 2008;149:91–9.CrossRefGoogle Scholar
  53. 53.
    Manios E, Michas F, Tsivgoulis G, Stamatelopoulos K, Tsagalis G, Koroboki E, et al. Impact of prehypertension on carotid artery intima-media thickening: actual or masked? Atherosclerosis. 2011;214:215–9.CrossRefGoogle Scholar
  54. 54.
    Manios E, Tsivgoulis G, Koroboki E, Stamatelopoulos K, Papamichael C, Toumanidis S, et al. Impact of prehypertension on common carotid artery intima-media thickness and left ventricular mass. Stroke. 2009;40:1515–8.CrossRefGoogle Scholar
  55. 55.
    Ikram MK, Witteman JC, Vingerling JR, Breteler MM, Hofman A, de Jong PT. Retinal vessel diameters and risk of hypertension: the Rotterdam study. Hypertension. 2006;47:189–94.CrossRefGoogle Scholar
  56. 56.
    Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, et al. The metabolic syndrome and chronic kidney disease in US adults. Ann Intern Med. 2004;140:167–74.CrossRefGoogle Scholar
  57. 57.
    Bianchi S, Bigazzi R, Campese V. Microalbuminuria in essential hypertension: significance, pathophysiology, and therapeutic implications. Am J Kidney Dis. 1999;34:973–95.CrossRefGoogle Scholar
  58. 58.
    Lee JE, Kim YG, Choi YH, Huh W, Kim DJ, Oh HY. Serum uric acid is associated with microalbuminuria in prehypertension. Hypertension. 2006;47:962–7.CrossRefGoogle Scholar
  59. 59.
    Tripolino C, Gnasso A, Carallo C, Scavelli FB, Irace C. Hemorheological profiles of subjects with prehypertension. Hypertens Res. 2006;39:519–23.CrossRefGoogle Scholar
  60. 60.
    Stamler J, Stamler R, Neaton JD. Blood pressure systolic and diastolic, and cardiovascular risks. Arch Intern Med. 1993;153:598–615.CrossRefGoogle Scholar
  61. 61.
    Hong H, Wang H, Liao H. Prehypertension is associated with increased carotid atherosclerotic plaque in the community population of Southern China. BMC Cardiovasc Disord. 2013;13:20.CrossRefGoogle Scholar
  62. 62.
    Knecht S, Wersching H, Lohmann H, Bruchmann M, Duning T, Dziewas R, et al. High normal blood pressure is associated with poor cognitive performance. Hypertension. 2008;51:663–8.CrossRefGoogle Scholar
  63. 63.
    Chrysohoou C, Pitsavos C, Panagiotakos DB, Skoumas J, Stefanadis C. Association between prehypertension status and inflammatory markers related to atherosclerotic disease. Am J Hypertens. 2004;17:568–73.CrossRefGoogle Scholar
  64. 64.
    Toikka JO, Laine H, Ahotupa M, Haapanen A, Viikari JS, Hartiala JJ, et al. Increased arterial intima-media thickness and in vivo LDL oxidation in young men with borderline hypertension. Hypertension. 2000;36:929–33.CrossRefGoogle Scholar
  65. 65.
    Bao X, Meng G, Zhang Q, Liu L, Wu H, Du H, et al. Elevated serum complement C3 levels are associated with prehypertension in an adult population. Clin Exp Hypertens. 2017;39:42–9.CrossRefGoogle Scholar
  66. 66.
    Bond V, Curry BH, Adams RG, Obisesan T, Pemminati S, Gorantla VR, et al. Cardiovascular responses to an isometric handgrip exercise in females with prehypertension. N Am J Med Sci. 2016;8:243–9.CrossRefGoogle Scholar
  67. 67.
    Di Stefano R, Barsotti MC, Felice F, Vlachopoulos C, Barbarini A. Endothelial progenitor cells in prehypertension. Curr Pharm Des. 2011;17:3002–19.CrossRefGoogle Scholar
  68. 68.
    Ishikawa Y, Ishikawa J, Ishikawa S, Kario K, Kajii E. Progression from prehypertension to hypertension and risk of cardiovascular disease. J Epidemiol. 2017;27:8–13.CrossRefGoogle Scholar
  69. 69.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. ESH/ESC guidelines for the management of arterial hypertension. J Hypertens. 2013;31:1281–357.CrossRefGoogle Scholar
  70. 70.
    Saxena Y, Gupta R, Moinuddin A, Narwal R. Blood pressure reduction following accumulated physical activity in prehypertensive. J Family Med Prim Care. 2017;5:349–56.CrossRefGoogle Scholar
  71. 71.
    Montero D, Roche E, Martinez-Rodriguez A. The impact of aerobic exercise training on arterial stiffness in pre- and hypertensive subjects: a systematic review and meta-analysis. Int J Cardiol. 2014;173:361–8.CrossRefGoogle Scholar
  72. 72.
    Ash GI, Taylor BA, Thompson PD, MacDonald HV, Lamberti L, Chen MH, et al. The antihypertensive effects of aerobic versus isometric handgrip resistance exercise. J Hypertens. 2017;35:291–9.CrossRefGoogle Scholar
  73. 73.
    Bushman B. Promoting exercise as medicine for prediabetes and prehypertension. Curr Sports Med Rep. 2014;13:233–9.CrossRefGoogle Scholar
  74. 74.
    Slimko ML, Mensah GA. The role of diets, food, and nutrients in the prevention and control of hypertension and prehypertension. Cardiol Clin. 2010;28:665–74.CrossRefGoogle Scholar
  75. 75.
    Davinelli S, Scapagnini G. Polyphenols: a promising nutritional approach to prevent or reduce the progression of prehypertension. High Blood Press Cardiovasc Prev. 2016;23:197–202.CrossRefGoogle Scholar
  76. 76.
    Williamson W, Foster C, Reid H, Kelly P, Lewandowski AJ, Boardman H, et al. Will exercise advice be sufficient for treatment of young adults with prehypertension and hypertension? A systematic review and meta-analysis. Hypertension. 2016;68:78–87.CrossRefGoogle Scholar
  77. 77.
    Rubinstein A, Miranda JJ, Beratarrechea A, Diez-Canseco F, Kanter R, Gutierrez L, et al. Effectiveness of an mHealth intervention to improve the cardiometabolic profile of people with prehypertension in low-resource urban settings in Latin-America: a randomized controlled trial. Lancet Diabetes Endocrinol. 2016;4:52–63.CrossRefGoogle Scholar
  78. 78.
    Gao J, Sun H, Liang X, Gao M, Zhao H, Qi Y, et al. Ideal cardiovascular health behaviours and factors prevent the development of hypertension in prehypertensive subjects. Clin Exp Hypertens. 2015;37:650–5.CrossRefGoogle Scholar
  79. 79.
    Sipahi I, Swaminathan A, Natesan V, Debanne SM, Simon DI, Fang JC. Effect of antihypertensive therapy on incident stroke in cohorts with prehypertensive blood pressure levels. Stroke. 2012;43:432–40.CrossRefGoogle Scholar
  80. 80.
    McInnes G. Prehypertension: how low to go and do drugs have a role? Br J Clin Pharmacol. 2011;73:187–93.CrossRefGoogle Scholar
  81. 81.
    Gaddam KK, Ventura H, Lavie CJ. Antihypertensive therapy versus alternative therapeutic options for prehypertension: an evidence-based approach. Futur Cardiol. 2012;8:115–22.CrossRefGoogle Scholar
  82. 82.
    Aronow WS. Treating hypertension and prehypertension in older people: when, whom and how. Maturitas. 2015;80:31–6.CrossRefGoogle Scholar
  83. 83.
    Collier SR, Landram MJ. Treatment of prehypertension: lifestyle and/or medication. Vasc Health Risk Manag. 2012;8:613–9.CrossRefGoogle Scholar
  84. 84.
    Lee M, Saver JL, Chang B, Chang KH, Hao Q, Ovbiagele B. Presence of baseline prehypertension and risk of incident stroke. A meta-analysis. Neurology. 2011;77:1330–7.CrossRefGoogle Scholar
  85. 85.
    Huang Y, Cai X, Li Y, Su L, Mai W, Wang S, et al. Prehypertension and the risk of stroke. Neurology. 2014;82:1153–61.CrossRefGoogle Scholar
  86. 86.
    Shen L, Ma H, Xiang MX, Wang JA. Meta-analysis of cohort studies of baseline prehypertension and risk of coronary heart disease. Am J Cardiol. 2013;112:266–71.CrossRefGoogle Scholar
  87. 87.
    Huang Y, Cai X, Liu C, Zhu D, Hua J, Hu Y, et al. Prehypertension and the risk of coronary heart disease in Asian and Western populations: a meta-analysis. J Am Heart Assoc. 2015;4:e001519.CrossRefGoogle Scholar
  88. 88.
    Haung Y, Wang S, Cai X, Mai W, Hu Y, Tang H, et al. Prehypertension and incidence of cardiovascular disease: a meta-analysis. BMC Med. 2013;11:177.CrossRefGoogle Scholar
  89. 89.
    Guo X, Zhang X, Guo L, Li Z, Zheng L, Yu S, et al. Association between pre-hypertension and cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Curr Hypertens Rep. 2013;15:703–16.CrossRefGoogle Scholar
  90. 90.
    Huang Y, Cai X, Zhang J, Mai W, Wang S, Hu Y, et al. Prehypertension and incidence of ESRD: a systematic review and meta-analysis. Am J Kidney Dis. 2014;63:76–83.CrossRefGoogle Scholar
  91. 91.
    Li Y, Xia P, Xu L, Wang Y, Chen L. A meta-analysis on prehypertension and chronic kidney disease. PLoS One. 2016;11:e0156575.CrossRefGoogle Scholar
  92. 92.
    Garofalo C, Borelli S, Pacilio M, Minutolo R, Chiodini P, De Nicola L, et al. Hypertension and prehypertension and prediction of development of decreased estimated GFR in the general population: a meta-analysis of cohort studies. Am J Kidney Dis. 2016;67:89–97.CrossRefGoogle Scholar
  93. 93.
    Leiba A, Twig G, Vivante A, Skorecki K, Golan E, Derazne E, et al. Prehypertension among 2.19 million adolescents and future risk for end-stage renal disease. J Hypertens. 2017;35:1290–6.CrossRefGoogle Scholar
  94. 94.
    Okada R, Yasuda Y, Tsushita K, Wakai K, Hamajima N, Matsuo S. Glomerular hyperfiltration in prediabetes and prehypertension. Nephrol Dial Transplant. 2012;27:1821–5.CrossRefGoogle Scholar
  95. 95.
    Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49:1774–7.CrossRefGoogle Scholar
  96. 96.
    Losito A, Zampi I, Fortunati I, del Favero A. Glomerular hyperfiltration and albuminuria in essential hypertension. Nephron. 1988;49:84–5.CrossRefGoogle Scholar
  97. 97.
    Mogensen CE. Early glomerular hyperfiltration in insulin-dependent diabetics and late nephropathy. Scand J Clin Lab Invest. 1986;46:201–6.CrossRefGoogle Scholar
  98. 98.
    Rudberg S, Persson B, Dahlquist G. Increased glomerular filtration rate as a predictor of diabetic nephropathy-an 8-year prospective study. Kidney Int. 1992;41:822–8.CrossRefGoogle Scholar
  99. 99.
    Gabbai FB. Renal reserve in patients with high blood pressure. Semin Nephrol. 1995;15:482–7.PubMedGoogle Scholar
  100. 100.
    Sl J, Wiseman MJ, Viberti GC. Glomerular hyperfiltration as a risk factor for diabetic nephropathy: five year report of a prospective study. Diabetologia. 1991;34:59–60.CrossRefGoogle Scholar
  101. 101.
    Neuringer JR, Brenner BM. Glomerular hypertension: cause and consequence of renal injury. J Hypertens. 1992;Suppl 10:S91–7.Google Scholar
  102. 102.
    Wang S, Wu H, Zhang Q, Xu J, Fan Y. Impact of baseline prehypertension on cardiovascular events and all-cause mortality in the general population: a meta-analysis of prospective cohort studies. Int J Cardiol. 2013;168:4857–60.CrossRefGoogle Scholar
  103. 103.
    Guo X, Zhang Y, Zheng L, Guo L, Li Z, Yu S, et al. Prehypertension is not associated with all-cause mortality: a systematic review and meta-analysis of prospective studies. PLoS One. 2013;8:e61796.CrossRefGoogle Scholar
  104. 104.
    Huang Y, Su L, Cai X, Mai W, Wang S, Hu Y, et al. Association of all-cause and cardiovascular mortality with prehypertension: a meta-analysis. Am Heart J. 2014;167:160–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Michael Doumas
    • 1
  • Niki Katsiki
    • 1
  • Dimitri P. Mikhailidis
    • 2
  1. 1.Second Propedeutic Department of Internal Medicine, Medical SchoolAristotle University of Thessaloniki, Hippocration HospitalThessalonikiGreece
  2. 2.Department of Clinical Biochemistry, Royal Free Hospital CampusUniversity College London Medical School, University College London (UCL)LondonUK

Personalised recommendations