Advertisement

Early Cardiovascular Dysfunction in Prehypertension

  • Ana Jelaković
  • Živka Dika
  • Vesna Herceg-Čavrak
  • Mario Laganović
  • Dragan Lović
  • Bojan Jelaković
Chapter
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)

Abstract

Prehypertension is highly prevalent but also very heterogeneous entity. It was observed that some prehypertensives are more prone to progress to sustained hypertension. To identify those subjects who will mostly benefit from early interventions and treatment is scientific challenge but at the same time it is of utmost pragmatical importance. Beside determination of associated risk factors which cluster in prehypertension, it is necessary to detect the presence of subclinical target organ damages. Markers of early cardiovascular dysfunction were evaluated from childhood to elderly on different levels—from endothelial dysfunction, retinal changes, arterial stiffness to left ventricular systolic dysfunction. Pathognomonic or highly specific biomarker for risk stratification in prehypertension has not been identified so far. For clinical judgment it is important to combine several of them (i.e., albuminuria, pulse wave velocity, intima media thickness…). It is interesting to analyze markers of cardiovascular dysfunction in various aging subgroups. Based on current data electrocardiogram, microalbuminuria, left ventricle ultrasound and measurement of carotid-intima thickness could add valuable information in risk stratification of an adult and elderly prehypertensive subjects. As masked hypertension was reported to be very frequently presented, it might be prudent to recommend ambulatory blood pressure monitoring as a starting point in evaluation of prehypertensive subject with any early marker of cardiovascular dysfunction.

Keywords

Prehypertension Cardiovascular risk Biomarkers Aging 

References

  1. 1.
    Julius S, Nesbitt S. Sympathetic oveactivity in hypertension. A moving target. Am J Hypertens. 1996;9:113S–20S.CrossRefPubMedGoogle Scholar
  2. 2.
    Yano Y, Neeland I, Ayers C, Peshock R, Berry J, Lloyd-Jones D, Greenland P, Mitchell G, Vongpatanasin W. Hemodynamic and mechanical properties of the proximal aorta in young and middle-aged adults with isolated systolic hypertension: the Dallas heart study. Hypertension. 2017;70:158–65.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhu H, Yan W, Ge D, Treiber FA, Harshfield GA, Kapuku G, Snieder H, Dong Y. Cardiovascular characteristics in American youth with prehypertension. Am J Hypertens. 2007;20:1051–7.CrossRefGoogle Scholar
  4. 4.
    Drukteinis J, Roman M, Fabsitz R, Lee E, Best L, Rusell M, Devereux R. Cardia and systemic hemodynamic characteristics of hypertension and prehypertension in adolescets and young adults.The Strong Heart Study. Circulation. 2007;15:221–7.CrossRefGoogle Scholar
  5. 5.
    Abdelhammed I, Smith R, Levy P, Smits G, Ferrario C. Noninvasive hemodynamic profiles in hypertensive subjects. Am J Hypertens. 2005;18:51S–9S.CrossRefPubMedGoogle Scholar
  6. 6.
    Phillips AA, Chirico D, Coverdale NS, Fitzgibbon LK, Shoemaker JK, Wade TJ, Cairney J, O'Leary DD. The association between arterial properties and blood pressure in children. Appl Physiol Nutr Metab. 2015;40(1):72–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Stabouli S, Kotsis V, Rizos Z, Toumanidis S, Karagianni C, Constantopoulos A, Zakopoulos N. Left ventricular mass in normotensive, prehypertensive and hypertensive children and adolescents. Pediatr Nephrol. 2009;24(8):1545–51.CrossRefGoogle Scholar
  8. 8.
    Garcia-Espinosa V, Curcio S, Marotta M, Castro JM, Arana M, Peluso G, Chiesa P, Giachetto G, Bia D, Zócalo Y. Changes in central aortic pressure levels, wave components and determinants associated with high peripheral blood pressure states in childhood: analysis of hypertensive phenotype. Pediatr Cardiol. 2016;37:1340–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Urbina EM, Khoury PR, McCoy C, Daniels SR, Kimball TR, Dolan LM. Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens (Greenwich). 2011;13:332–42.CrossRefGoogle Scholar
  10. 10.
    Lurbe E, Torro I, Garcia-Vicent C, Alvarez J, Fernandez-Fornoso JA, Redon J. Blood pressure and obesity exert independent influences on pulse wave velocity in youth. Hypertension. 2012;60:550–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Murgan I, Beyer S, Kotliar KE, Weber L, Bechtold-Dalla Pozza S, Dalla Pozza R, Wegner A, Sitnikova D, Stock K, Heemann U, Schmaderer C, Baumann M. Arterial and retinal vascular changes in hypertensive and prehypertensive adolescents. Am J Hypertens. 2013;26:400–8.CrossRefGoogle Scholar
  12. 12.
    Lorenzo C, Aung K, Stern M, Haffner S. Pulse pressure, prehypertension, and mortality: the San Antonio heart study. Am J Hypertens. 2009;22:1219–26.CrossRefGoogle Scholar
  13. 13.
    Gedikli O, Kiris A, Ozturk S, Baltaci D, Karaman K, Durmus I, Baykan M, Celik S. Effects of prehypertension on arterial stiffness and wave reflections. Clin Exp Hypertens. 2010;32:84–9.CrossRefGoogle Scholar
  14. 14.
    Tomiyama H, Matsumoto C, Yamada J, Yoshida M, OdairaM SK, Nagata M, Yamashina A. Predictors ofprogression from prehypertension to hypertension in Japanesemen. Am J Hypertens. 2009;22:630–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Najjar S, Scuteri A, Shetty V, Wright J, Muller FJ, Spurgeon H, Ferrucci L, Lakatta E. Pulse wave velocity is an independent predictor of the longitudinalincrease in systolic blood pressure and of incident hypertension inthe Baltimore Longitudinal Study of Aging. J Am Coll Cardiol. 2008;51:1377–83.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tomiyama H, Hashimoto H, Matsumoto C, Odaira M, YoshidaM SK, Nagata M, Yamashina A, Doba N, Hinohara S. Effects of aging and persistent prehypertension on arterialstiffening. Atherosclerosis. 2011;217:130–4.CrossRefGoogle Scholar
  17. 17.
    Celik T, Iyisoy A, Kursaklioglu H, Turhan H, CagdasYuksel U, Kilic S, Kutsi Kabul H, Genc C. Impaired aortic elasticproperties in young patients with prehypertension. Blood Press Monit. 2006;11:251–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Erdogan D, Caliskan M, Yildrim I, Gullu H, Baycan S, Ciftici O, Yildir A, Mederrisoglu H. Effects of normal blood pressure, prehypertension and hypertension on left ventricular diastolic function and aortic elastic properties. Blood Press. 2007;16:114–21.CrossRefPubMedGoogle Scholar
  19. 19.
    Jia C, Jiang Y, Yang Z, Sun X, Yu Y, Wang H, Lu Y, Chen A, Wang Z. Ascending aortic elasticity and related risk factors study on prehypertension patients. Am J Hypertens. 2017;30:61–6.CrossRefGoogle Scholar
  20. 20.
    Toikka J, Niemi P, Ahotupa M, Niinikoski H, Rönnemaa T, Viikari J, Hartiala J, Raitakari O. Decreased large artery distensibility in borderline hypertension is related to increased in vivo low-density lipoprotein oxidation. Scand J Clin Lab Invest. 2002;62:301–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Pauletto P, Palatini P, Da Ros S, Pagliara V, Santipolo N, Baccillieri S, Casiglia E, Mormino P, Pessina AC. Factors underlying the increase in carotid intima-media thickness in borderline hypertensives. Arterioscler Thromb Vasc Biol. 1999;19:1231–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Day TG, Park M, Kinra S. The association between blood pressure and carotid intima-media thickness in children: a systematic review. Cardiol Young. 2017:1–11.Google Scholar
  23. 23.
    Jourdan C, Wuhl E, Litwin M, Fahr K, Trelewicz J, Jobs K, Schenk JP, Grenda R, Mehls O, Tröger J, Schaefer F. Normative values for intima-media thickness and distensibility of large arteries in healthy adolescents. J Hypertens. 2005;23:1707–15.CrossRefPubMedGoogle Scholar
  24. 24.
    Stabouli S, Kotsis V, Karagianni C, Zakopoulos N, Konstantopoulos A. Blood pressure and carotid artery intima-media thickness in children and adolescents: the role of obesity. Hell J Cardiol. 2012;53:41–7.Google Scholar
  25. 25.
    Manios E, Michas F, Tsivgoulis G, Stamatelopoulos K, Tsagalis G, Koroboki E, Alexaki E, Papamichael C, Vemmos K, Zakopoulos N. Impact of prehypertension on carotid artery intima-media thickening: actual or masked? Atherosclerosis. 2011;214:215–9.CrossRefGoogle Scholar
  26. 26.
    Alpaydin S, Turan Y, Caliskan M, Caliskan Z, Aksu F, Ozyildirim S, Buyukterzi Z, Kostek O, Muderrisoglu H. Morning blood pressure surge is associated with carotid intima-media thickness in prehypertensive patients. Blood Press Monit. 2017;22:131–6.CrossRefGoogle Scholar
  27. 27.
    Hong H, Wang H, Liao H. Prehypertension is associated with increased carotid atherosclerotic plaque in the community population of southern China. BMC Cardiovasc Disord. 2013;13:20–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Manios E, Tsivgoulis G, Koroboki E, Stamatelopoulos K, Papamichael C, Toumanidis S, Stamboulis E Vemmos K, Zakopoulos N. Impact of prehypertension on common carotid artery intima-media thickness and left ventricular mass. Stroke. 2009;40:1515–8.CrossRefGoogle Scholar
  29. 29.
    Psaty BM, Arnold AM, Olson J, Saad MF, Shea S, Post W, Burke GL. Association between levels of blood pressure and measures of subclinical disease multi-ethnic study of atherosclerosis. Am J Hypertens. 2006;19:1110–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Karasek D, Vaaverkova H, Halenka M, Jackuliakova D, Frysak Z, Orsag J, Novotny D. Prehypertension in dyslipidemic individuals; relationship to metabolic parameters and intima-media thickness. Biomed Pap Med Fac Palacky Olomouc Czech Repub. 2013;157:41–9.CrossRefGoogle Scholar
  31. 31.
    Femia R, Kozakova M, Nannipieri M, Gonzales-Villalpando C, Stern MP, Haffner SM, Ferrannini E. Carotid intima-media thickness in confirmed prehypertensive subjects predictors and progression. Arterioscler Thromb Vasc Biol. 2007;27:2244–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Liew G, Wang JJ, Mitchell P, Wong TY. Retinal vascular imaging: a new tool in microvascular disease research. Circ Cardiovasc Imaging. 2008;1:156–61.CrossRefPubMedGoogle Scholar
  33. 33.
    Wong TY, Liew G, Tapp RJ, Schmidt MI, Wang JJ, Mitchell P, Klein R, Klein BE, Zimmet P, Shaw J. Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based crosssectional studies. Lancet. 2008;371:736–43.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wong TY, Klein R, Sharrett AR, Duncan BB, Couper DJ, Klein BEK, Hubbard LD, Nieto FJ. For the atherosclerosis risk in communities study. Retinal arteriolar diameter and risk for hypertension. Ann Intern Med. 2004;140:248–55.CrossRefPubMedGoogle Scholar
  35. 35.
    Cuspidi C, Negri F, Giudici V, Sala C. Retinal changes and cardiac remodelling in systemic hypertension. Ther Adv Cardiovasc Dis. 2009;3:205–14.CrossRefPubMedGoogle Scholar
  36. 36.
    Liew G, Sharrett AR, Wang JJ, Klein R, Klein BE, Mitchell P, Wong TY. Relative importance of systemic determinants of retinal arteriolar and venular caliber: the atherosclerosis risk in communities study. Arch Ophthalmol. 2008;126:1404–10.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wong TY, Islam FM, Klein R, Klein BE, Cotch MF, Castro C, et al. Retinal vascular caliber, cardiovascular risk factors, and inflammation: the multiethnic study of atherosclerosis (MESA). Invest Ophthalmol Vis Sci. 2006;47:2341–50.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    De Jong FJ, Ikram MK, Witteman JC, Hofman A, de Jong PT, Breteler MM. Retinal vessel diameters and the role of inflammation in cerebrovascular disease. Ann Neurol. 2007;61:491–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Sabanayagam C, Shankar A, Koh D, Chia KS, Saw SM, Lim SC, et al. Retinal microvascular caliber and chronic kidney disease in an Asian population. Am J Epidemiol. 2009;169:625–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang JJ, Mitchell P, Leung H, Rochtchina E, Wong TY, Klein R. Hypertensive retinal vessel wall signs in a general older population: the Blue Mountains eye study. Hypertension. 2003;42:534–41.CrossRefPubMedGoogle Scholar
  41. 41.
    Wong TY, Klein R, Klein BEK, Tielsch J, Hubbard LD, Nieto FJ. Retinal microvascular abnormalities, and their relation to hypertension, cardiovascular diseases and mortality. Surv Ophthalmol. 2001;46:59–80.CrossRefPubMedGoogle Scholar
  42. 42.
    Grassi G, Buzzi S, Dell Oro R, Mineo C, Dimitriadis K, Seravalle G, Lonati L, Cuspidi C. Structural alterations of the retinal microcirculation in the “prehypertensive” high-normal blood pressure state. Curr Pharm Des. 2013;19:2375–81.CrossRefGoogle Scholar
  43. 43.
    Klein R, Sharrett AR, Klein BEK, Chambless L, Cooper S, Hubbard LD, Evans G. Are retinal arteriolar abnormalities related to atherosclerosis? The atherosclerosis risk in communities study. Arterioscler Thromb Vasc Biol. 2000;20:1644–50.CrossRefPubMedGoogle Scholar
  44. 44.
    Sharrett AR, Hubbard LD, Cooper LS, Sorlie PD, Brothers RJ, Nieto FJ, Pinsky JL, Klein R. Retinal arteriolar diameters and elevated blood pressure: the atherosclerosis risk in communities study. Am J Epidemiol. 1999;150:263–70.CrossRefGoogle Scholar
  45. 45.
    Mitchell P, Cheung N, de Haseth K, Taylor B, Rochtchina E, Islam FM, Wang JJ, Saw SM, Wong TY. Blood pressure and retinal arteriolar narrowing in children. Hypertension. 2007;49:1156–62.CrossRefPubMedGoogle Scholar
  46. 46.
    Klein R, Klein BEK, Moss SE. The relation of systemic hypertension to changes in the retinal vasculature. The beaver dam eye study. Trans Am Ophthalmol Soc. 1997;95:329–50.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Dinga J, Wai KL, McGeechand K, Lkrama MK, Kawasaki R, Xie J, Klein R, Klein B BK, Frances Cotch M, Wang JJ, Mitchell P, Shaw JE, Takamasa K, Richey Sharrett A, Wonga TY, for the Meta-Eye Study Group. Retinal vascular caliber and the development of hypertension: a meta-analysis of individual participant data. J Hypertens. 2014;32:207–15.CrossRefGoogle Scholar
  48. 48.
    Xia F, Liu G, Shi Y, Zhang Y. Impact of microalbuminuria on incident coronary heart disease, cardiovascular and all-cause mortality: a meta-analysis of prospective studies. Int J Clin Exp Med. 2015;8:1–9.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Weil BR, Stauffer BL, Greiner JJ, DeSouza CA. Prehypertension is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation in sedentary adults. Am J Hypertens. 2011;24:976–81.CrossRefGoogle Scholar
  50. 50.
    Wang G, Wang A, Tong W, Liu Y, Zhang Y. Association of elevated inflammatory and endothelial biomarkers with prehypertension among Mongolians in China. Hypertens Res. 2011;34:516–20.CrossRefPubMedGoogle Scholar
  51. 51.
    Nikolov P, Nikolov J, Prbecova M, Deneva T, Vladimirova L, Atanasova P, Hrischev P, Gerogieva E, Nikolov F. Flow mediated vasodilatation and some biomarkers of endothelial activation in pre-hypertensive objects. 2015 Nov 24. pii: wimj.2015.033.  https://doi.org/10.7727/wimj.2015.033.
  52. 52.
    Vrdoljak A, Ivković V, Karanović S, Dika Ž, Vuković I, Kos J, Laganović M, Željković Vrkić T, FištrekPrlić M, Pećin I, Jelaković B. Markers of early renal impairment in prehypertension. J Hypertension. 2016;34(Suppl 1. - ISH 2016 Abstract Book):e47.CrossRefGoogle Scholar
  53. 53.
    Knight E, Kramer H, Curhan G. High normal blood pressure and microalbuminuria. Am J Kid Dis. 2003;41:588–95.CrossRefPubMedGoogle Scholar
  54. 54.
    Ogunniyi MO, Croft JB, Greenlund KJ, Giles WH, Mensah GA. Racial/ethnic differences in microalbuminuria among adults with prehypertension and hypertension: National Health and nutrition examination survey (NHANES), 1999–2006. Am J Hypertens. 2010;23:859–64.CrossRefPubMedGoogle Scholar
  55. 55.
    Tenekecioglu E, Yilmaz M, Yontar O, Karaagac K, Agca F, Tutuncu A, Kuzeytemiz M, Bekler A, Senturk M, Aydin U, Demir Ş. Microalbuminuria in untreated prehypertension and hypertension without diabetes. Int J Clin Exp Med. 2014;7:3420–9.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kim B, Lee H, Sung K, Kim B, Kang J, Lee M, Park J. Comparison of microalbuminuria in 2 blood pressure categories of Prehypertensive subjects. Circ J. 2007;71:1283–128.CrossRefPubMedGoogle Scholar
  57. 57.
    Lee J, Kim Y, Choi Y, Huh W, Kim D, Young H. Serum uric acid is associated with microalbuminuria in prehypertension. Hypertension. 2006;47:962–7.CrossRefGoogle Scholar
  58. 58.
    Okada R, Yasuda Y, Tsushita K, Wakai K, Hamajima N, Matsuo S. Glomerular hyperfiltration in prediabetes and prehypertension. Nephrol Dial Transplant. 2012;27(5):1821.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yi H, Zhang WZ, Zhang H, Chen YH, Zhou MC. Subclinical target organ damage in normotensive and prehypertensive patients. Minerva Cardioangiol. 2017;65:16–23.PubMedGoogle Scholar
  60. 60.
    Peng H, Ding J, Peng Y, Zhang Q, Xu Y, Chao X, Tian H, Zhang Y. Hyperuricemia and microalbuminuria are separately and independently associated with prehypertension among Chinese Han women. Metab Syndr Relat Disord. 2012;10:202–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Zhang Q, Peng H, Ding JS, Xu YY, Chao XQ, Tian HG, Zhang YH. Association between urinary albumin-to-creatinine ratio and prehypertension. Zhonghua Liu Xing Bing XueZaZhi. 2012;33:32–6.Google Scholar
  62. 62.
    Ding J, Peng H, Peng Y, Zhang Q, Xu Y, Chao X, Tian H, Zhang Y. Urinary albumin-to-creatinine ratio in a first-morning void urine and prehypertension among Chinese Han women. Blood Press. 2012;21:128–33.CrossRefPubMedGoogle Scholar
  63. 63.
    Wang Q, Huang J, Sun Y, Zhang W, Gao Y, Yao W, Bian B, Li Y, Wu X, Niu K. Association of microalbuminuria with diabetes is stronger in people with prehypertension compared to those with ideal blood pressure. Nephrology (Carlton). 2017.  https://doi.org/10.1111/nep.13082. [Epub ahead of print].CrossRefGoogle Scholar
  64. 64.
    Wang T, Evans J, Meigs J, Rifai N, Fox C, D’Agostino R, Levy D, Vasan R. Low-grade albuminuria and the risks of hypertension and blood pressure progression. Circulation. 2005;111:1370–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Norton G, Maseko M, Libhaber E, Libhaber C, Majane O, Dessein P, Sareli P, Woodiwiss A. Is prehypertension an independent predictor of target organ changes in young-to-middle-aged persons of African descent? J Hypertens. 2008;26:2279–87.CrossRefGoogle Scholar
  66. 66.
    Sehestedta T, Jeppesena J, Hansenb T, Rasmussene S, Wachtellf K, Ibseng H, Torp-Pedersenc C, Olsen M. Which markers of subclinical organ damage to measure in individuals with high normal blood pressure? J Hypertens. 2009;27:1165–71.CrossRefGoogle Scholar
  67. 67.
    Ivkovic V, Parini A, Vrdoljak A, Karanovic S, Baric M, Abramovic M, Bachelli S, Cagnati M, Cicero A, D’Addato S, Esposti D, Fucek M, Grandi E, Kos J, Laganovic M, Rogic D, Rosticci M, Vukovic I, Borghi C, Jelakovic B. Predictors of incident hypertension in prehypertensives. J Hypertens. 2016;34:e127–8.Google Scholar
  68. 68.
    Bajpai J, Agarwal S, Garg B, Goel A. Impact of prehypertension on left ventricular structure, function and geometry. J Clin Diagn Res. 2014;8:BC07–10.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Di Bello V, Talini E, Gianno C, Dele Donne MG, Canale ML, Nardi C, Palagi C, Dini FL, Penno G, DelPrao S, Marzilli M, Pedrinelli R. Early left ventricular mechincs abnormalities in prehypertension: a two-dimensional strain echocardiography study. Am J Hypertens. 2010;23:405–12.CrossRefGoogle Scholar
  70. 70.
    Ahn H-S, Kim S-J, Kim M-K, Choue C-W, Kim K-S, Song J-S, Bae J-H. The difference of left ventricular hypertrophy and the diastolic function between prehypertensives and normotensives. Korean Circulation J. 2006;36:437–42.CrossRefGoogle Scholar
  71. 71.
    Kim S, Cho G-Y, Baik I, Lim S, Choi C, Lim H, Kim E, Park C, Kim J, Shin C. Early abnormalities of cardiovascular structure and function in middle-aged Korean adults with prehypertension; The Korean Genome Epidemiology Study. Am J Hypertens. 2011;24:218–24.CrossRefGoogle Scholar
  72. 72.
    Jung J, Park S, Oh C-O, Kang J, Choi J-M, Ryoo J-H, Lee J-H. The influence of prehypertension, controlled and uncontrolled hypertension on left ventricular diastolic function and structure in the general Korean population. Hypertens Res. 2017;40:606–12.CrossRefGoogle Scholar
  73. 73.
    Litwin M, Niemirska A, Sladowska J, Antoniewicz J, Daszkowska J, Wierzbicka A, Wawer Z, Grenda R. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr Nephrol. 2006;21:811–9.CrossRefPubMedGoogle Scholar
  74. 74.
    Sorof JM, Turner J, Martin DS, Garcia K, Garami Z, Alexandrov AV, Wan F, Portman RJ. Cardiovascular risk factors and sequelae in hypertensive children identified by referral versus school-based screening. Hypertension. 2004;43:214–8.CrossRefPubMedGoogle Scholar
  75. 75.
    McNiece KL, Gupta-Malhotra M, Samuels J, Bell C, Garcia K, Poffenbarger T, Sorof JM, Portman RJ, National High Blood Pressure Education Program Working Group. Left ventricular hypertrophy in hypertensive adolescents: analysis of risk by 2004 National High Blood Pressure Education Program Working Group staging criteria. Hypertension. 2007;50:392–5.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Falkner B, DeLoach S, Keith SW, Gidding SS. High risk blood pressure and obesity increase the risk for left ventricular hypertrophy in African-American adolescents. J Pediatr. 2013;162:94–100.CrossRefPubMedGoogle Scholar
  77. 77.
    Markus M, Stritzke J, Lieb W, Mayer B, Luchner A, Doring A, Keil U, Hense H-W, Schunkert H. Implications of persistent prehypertension for ageing-related changes in left ventricular geometry and function: The MONICA/KORA Augsburg study. J Hypertens. 2008;26:2040–9.CrossRefGoogle Scholar
  78. 78.
    Jang S, Kim S, Lee C, Cho E, Cho S, Lee S-C. Prehypertension and left ventricular dysfunction in middle-aged Koreans. Korean Circ J. 2016;46:536–41.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Santos A, Gupta D, Bello N, Gori M, Claggett B, Fuchs F, Shah A, Coresh J, Sharrett A, Cheng S, Solomon S. Prehypertension is associated with abnormalities of cardiac structure and function in the atherosclerosis risk in communities study. Am J Hypertens. 2016;29:568–74.CrossRefGoogle Scholar
  80. 80.
    Sironi AM, Pingitore A, Ghione S, De Marchi D, Scattini B, Positano V, Muscelli E, Ciociaro D, Lombardi M, Ferrannini E, Gastaldelli A. Early hypertension is associated with reduced regional cardiac function, insulin resistance, epicardial, and visceral fat. Hypertension. 2008;51:282–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ana Jelaković
    • 1
  • Živka Dika
    • 2
  • Vesna Herceg-Čavrak
    • 3
  • Mario Laganović
    • 1
  • Dragan Lović
    • 4
  • Bojan Jelaković
    • 2
  1. 1.Department of Nephrology, Hypertension, Dialysis and TransplantationUniversity Hospital Centre ZagrebZagrebCroatia
  2. 2.Department of Nephrology, Hypertension, Dialysis and Transplantation, School of MedicineUniversity of Zagreb, University Hospital Centre ZagrebZagrebCroatia
  3. 3.Pediatric ClinicZagrebCroatia
  4. 4.Clinic for Internal MedicineIntermedicaNišSerbia

Personalised recommendations