Advertisement

Physical Activity and Exercise Training as Important Modifiers of Vascular Health

  • Arno Schmidt-Trucksäss
Chapter
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)

Abstract

Both the recreational and working world of people is characterized by increasing automation, which has an unfavorable effect on the extent of physical activity and fitness. This is linked to increased overall morbidity and mortality. To counteract this development, it is important to promote physical activity and exercise training in an appropriate manner. Physical activity and exercise are basically differentiated into the components endurance or strength or a mixture of both, which have different effects on the structure and function of the vascular system. The effect of physical activity and exercise on established structural and functional vascular biomarkers carotid intima-media thickness and pulse wave velocity as surrogate endpoints for cardiovascular diseases is of major importance for health prevention and rehabilitation.

Keywords

Physical activity Exercise training Vascular biomarker Pulse wave velocity Carotid intima-media thickness Cardiovascular diseases Prevention 

References

  1. 1.
    Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, Bauman AE, van der Ploeg HP. Daily sitting time and all-cause mortality: a meta-analysis. PLoS One. 2013;8:e80000.CrossRefGoogle Scholar
  2. 2.
    Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, Alter DA. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162:123–32.CrossRefGoogle Scholar
  3. 3.
    Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, Lancet Physical Activity Series Working, G. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380:219–29.CrossRefGoogle Scholar
  4. 4.
    Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FG, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD 3rd, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang YH, Khatibzadeh S, Khoo JP, Kok C, Laden F, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.CrossRefGoogle Scholar
  5. 5.
    Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100:126–31.Google Scholar
  6. 6.
    Grontved A, Koivula RW, Johansson I, Wennberg P, Ostergaard L, Hallmans G, Renstrom F, Franks PW. Bicycling to work and primordial prevention of cardiovascular risk: a cohort study among Swedish men and women. J Am Heart Assoc. 2016;5:e004413.CrossRefGoogle Scholar
  7. 7.
    Hoechsmann, C., Meister, S., Gehrig, D., Gordon, E., Li, Y., Nussbaumer, M., Rossmeissl, A., Hanssen, H., Schmidt-Trucksäss, A. Effect of e-bike versus bike commuting on cardiorespiratory fitness in overweight adults: a 4-week randomized pilot study. Clin J Sport Med. 2017.  https://doi.org/10.1097/JSM.0000000000000438CrossRefGoogle Scholar
  8. 8.
    Lusk AC, Mekary RA, Feskanich D, Willett WC. Bicycle riding, walking, and weight gain in premenopausal women. Arch Intern Med. 2010;170:1050–6.CrossRefGoogle Scholar
  9. 9.
    Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, Shaw JE, Bertovic DA, Zimmet PZ, Salmon J, Owen N. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35:976–83.CrossRefGoogle Scholar
  10. 10.
    Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP, American College of Sports, M. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334–59.CrossRefGoogle Scholar
  11. 11.
    Vanhees L, de Sutter J, Gelada SN, Doyle F, Prescott E, Cornelissen V, Kouidi E, Dugmore D, Vanuzzo D, Borjesson M, Doherty P, EACPR. Importance of characteristics and modalities of physical activity and exercise in defining the benefits to cardiovascular health within the general population: recommendations from the EACPR (Part I). Eur J Prev Cardiol. 2012;19:670–86.CrossRefGoogle Scholar
  12. 12.
    Vanhees L, Geladas N, Hansen D, Kouidi E, Niebauer J, Reiner Z, Cornelissen V, Adamopoulos S, Prescott E, Borjesson M, Bjarnason-Wehrens B, Bjornstad HH, Cohen-Solal A, Conraads V, Corrado D, de Sutter J, Doherty P, Doyle F, Dugmore D, Ellingsen O, Fagard R, Giada F, Gielen S, Hager A, Halle M, Heidbuchel H, Jegier A, Mazic S, Mcgee H, Mellwig KP, Mendes M, Mezzani A, Pattyn N, Pelliccia A, Piepoli M, Rauch B, Schmidt-Trucksäss A, Takken T, Van Buuren F, Vanuzzo D. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR. Part II. Eur J Prev Cardiol. 2012;19:1005–33.CrossRefGoogle Scholar
  13. 13.
    Mundwiler J, Schupbach U, Dieterle T, Leuppi JD, Schmidt-Trucksäss A, Wolfer DP, Miedinger D, Brighenti-Zogg S. Association of occupational and leisure-time physical activity with aerobic capacity in a working population. PLoS One. 2017;12:e0168683.CrossRefGoogle Scholar
  14. 14.
    Aspenes ST, Nauman J, Nilsen TI, Vatten LJ, Wisloff U. Physical activity as a long-term predictor of peak oxygen uptake: the HUNT Study. Med Sci Sports Exerc. 2011;43:1675–9.CrossRefGoogle Scholar
  15. 15.
    Myers J, Kaykha A, George S, Abella J, Zaheer N, Lear S, Yamazaki T, Froelicher V. Fitness versus physical activity patterns in predicting mortality in men. Am J Med. 2004;117:912–8.CrossRefGoogle Scholar
  16. 16.
    Hahn V, Halle M, Schmidt-Trucksäss A, Rathmann W, Meisinger C, Mielck A. Physical activity and the metabolic syndrome in elderly German men and women: results from the population-based KORA survey. Diabetes Care. 2009;32:511–3.CrossRefGoogle Scholar
  17. 17.
    Jeon CY, Lokken RP, Hu FB, Van Dam RM. Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care. 2007;30:744–52.CrossRefGoogle Scholar
  18. 18.
    Manson JE, Greenland P, Lacroix AZ, Stefanick ML, Mouton CP, Oberman A, Perri MG, Sheps DS, Pettinger MB, Siscovick DS. Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N Engl J Med. 2002;347:716–25.CrossRefGoogle Scholar
  19. 19.
    Powell KE, Paluch AE, Blair SN. Physical activity for health: what kind? How much? How intense? On top of what? Annu Rev Public Health. 2011;32:349–65.CrossRefGoogle Scholar
  20. 20.
    Wen CP, Wai JP, Tsai MK, Yang YC, Cheng TY, Lee MC, Chan HT, Tsao CK, Tsai SP, Wu X. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011;378:1244–53.CrossRefGoogle Scholar
  21. 21.
    Lee DC, Pate RR, Lavie CJ, Sui X, Church TS, Blair SN. Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol. 2014;64:472–81.CrossRefGoogle Scholar
  22. 22.
    O'donovan G, Lee IM, Hamer M, Stamatakis E. Association of “weekend warrior” and other leisure time physical activity patterns with risks for all-cause, cardiovascular disease, and cancer mortality. JAMA Intern Med. 2017;177:335–42.CrossRefGoogle Scholar
  23. 23.
    Naci H, Ioannidis JP. Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study. BMJ. 2013;347:f5577.CrossRefGoogle Scholar
  24. 24.
    Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46:667–75.CrossRefGoogle Scholar
  25. 25.
    Cornelissen VA, Fagard RH, Coeckelberghs E, Vanhees L. Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension. 2011;58:950–8.CrossRefGoogle Scholar
  26. 26.
    Kelley GA, Kelley KS, Roberts S, Haskell W. Comparison of aerobic exercise, diet or both on lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials. Clin Nutr. 2012;31:156–67.CrossRefGoogle Scholar
  27. 27.
    Mora S, Cook N, Buring JE, Ridker PM, Lee IM. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation. 2007;116:2110–8.CrossRefGoogle Scholar
  28. 28.
    Green DJ, Hopman MT, Padilla J, Laughlin MH, Thijssen DH. Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev. 2017;97:495–528.CrossRefGoogle Scholar
  29. 29.
    Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95:549–601.CrossRefGoogle Scholar
  30. 30.
    Calbet JA, Gonzalez-Alonso J, Helge JW, Sondergaard H, Munch-Andersen T, Boushel R, Saltin B. Cardiac output and leg and arm blood flow during incremental exercise to exhaustion on the cycle ergometer. J Appl Physiol (1985). 2007;103:969–78.CrossRefGoogle Scholar
  31. 31.
    Harrison PR, Affara N, Mcnab A, Paul J. Erythroid differentiation in a friend erythroleukemic cell X lymphoma hybrid cell line is limited, possibly due to reduced hem levels. Exp Cell Res. 1977;109:237–46.CrossRefGoogle Scholar
  32. 32.
    Hellstrom G, Fischer-Colbrie W, Wahlgren NG, Jogestrand T. Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise. J Appl Physiol (1985). 1996;81:413–8.CrossRefGoogle Scholar
  33. 33.
    Sato K, Ogoh S, Hirasawa A, Oue A, Sadamoto T. The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. J Physiol. 2011;589:2847–56.CrossRefGoogle Scholar
  34. 34.
    Furchgott RF. The 1996 Albert Lasker medical research awards. The discovery of endothelium-derived relaxing factor and its importance in the identification of nitric oxide. JAMA. 1996;276:1186–8.CrossRefGoogle Scholar
  35. 35.
    Napoli C, Ignarro LJ. Nitric oxide and atherosclerosis. Nitric Oxide. 2001;5:88–97.CrossRefGoogle Scholar
  36. 36.
    Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995;75:519–60.CrossRefGoogle Scholar
  37. 37.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329:2002–12.CrossRefGoogle Scholar
  38. 38.
    Schmidt-Trucksäss A, Schmid A, Brunner C, Scherer N, Zach G, Keul J, Huonker M. Arterial properties of the carotid and femoral artery in endurance-trained and paraplegic subjects. J Appl Physiol (1985). 2000;89:1956–63.CrossRefGoogle Scholar
  39. 39.
    Tinken TM, Thijssen DH, Hopkins N, Dawson EA, Cable NT, Green DJ. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension. 2010;55:312–8.CrossRefGoogle Scholar
  40. 40.
    Huonker M, Schmid A, Schmidt-Trucksäss A, Grathwohl D, Keul J. Size and blood flow of central and peripheral arteries in highly trained able-bodied and disabled athletes. J Appl Physiol (1985). 2003;95:685–91.CrossRefGoogle Scholar
  41. 41.
    Rowley NJ, Dawson EA, Hopman MT, George KP, Whyte GP, Thijssen DH, Green DJ. Conduit diameter and wall remodeling in elite athletes and spinal cord injury. Med Sci Sports Exerc. 2012;44:844–9.CrossRefGoogle Scholar
  42. 42.
    Huonker M, Schmid A, Sorichter S, Schmidt-Trucksab A, Mrosek P, Keul J. Cardiovascular differences between sedentary and wheelchair-trained subjects with paraplegia. Med Sci Sports Exerc. 1998;30:609–13.CrossRefGoogle Scholar
  43. 43.
    Giannattasio C, Failla M, Grappiolo A, Bigoni M, Carugo S, Denti M, Mancia G. Effects of prolonged immobilization of the limb on radial artery mechanical properties. Hypertension. 1998;32:584–7.CrossRefGoogle Scholar
  44. 44.
    van Duijnhoven NT, Green DJ, Felsenberg D, Belavy DL, Hopman MT, Thijssen DH. Impact of bed rest on conduit artery remodeling: effect of exercise countermeasures. Hypertension. 2010;56:240–6.CrossRefGoogle Scholar
  45. 45.
    Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Investig. 2005;85:9–23.CrossRefGoogle Scholar
  46. 46.
    Glagov S, Zarins C, Giddens DP, Ku DN. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med. 1988;112:1018–31.Google Scholar
  47. 47.
    Robinson TE, Sue DY, Huszczuk A, Weiler-Ravell D, Hansen JE. Intra-arterial and cuff blood pressure responses during incremental cycle ergometry. Med Sci Sports Exerc. 1988;20:142–9.CrossRefGoogle Scholar
  48. 48.
    Boutouyrie P, Bussy C, Lacolley P, Girerd X, Laloux B, Laurent S. Association between local pulse pressure, mean blood pressure, and large-artery remodeling. Circulation. 1999;100:1387–93.CrossRefGoogle Scholar
  49. 49.
    Roman MJ, Pickering TG, Schwartz JE, Pini R, Devereux RB. Relation of arterial structure and function to left ventricular geometric patterns in hypertensive adults. J Am Coll Cardiol. 1996;28:751–6.CrossRefGoogle Scholar
  50. 50.
    Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6:16–26.CrossRefGoogle Scholar
  51. 51.
    Johnson BD, Mather KJ, Wallace JP. Mechanotransduction of shear in the endothelium: basic studies and clinical implications. Vasc Med. 2011;16:365–77.CrossRefGoogle Scholar
  52. 52.
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.CrossRefGoogle Scholar
  53. 53.
    Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–42.CrossRefGoogle Scholar
  54. 54.
    Munzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J Am Coll Cardiol. 2017;70:212–29.CrossRefGoogle Scholar
  55. 55.
    Spescha RD, Glanzmann M, Simic B, Witassek F, Keller S, Akhmedov A, Tanner FC, Luscher TF, Camici GG. Adaptor protein p66(Shc) mediates hypertension-associated, cyclic stretch-dependent, endothelial damage. Hypertension. 2014;64:347–53.CrossRefGoogle Scholar
  56. 56.
    Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995;92:1355–74.CrossRefGoogle Scholar
  57. 57.
    Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1994;89:2462–78.CrossRefGoogle Scholar
  58. 58.
    Bauer M, Caviezel S, Teynor A, Erbel R, Mahabadi AA, Schmidt-Trucksäss A. Carotid intima-media thickness as a biomarker of subclinical atherosclerosis. Swiss Med Wkly. 2012;142:w13705.Google Scholar
  59. 59.
    Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Hernandez Hernandez R, Jaff M, Kownator S, Naqvi T, Prati P, Rundek T, Sitzer M, Schminke U, Tardif JC, Taylor A, Vicaut E, Woo KS. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis. 2012;34:290–6.CrossRefGoogle Scholar
  60. 60.
    Vlachopoulos C, Xaplanteris P, Aboyans V, Brodmann M, Cifkova R, Cosentino F, de Carlo M, Gallino A, Landmesser U, Laurent S, Lekakis J, Mikhailidis DP, Naka KK, Protogerou AD, Rizzoni D, Schmidt-Trucksäss A, Van Bortel L, Weber T, Yamashina A, Zimlichman R, Boutouyrie P, Cockcroft J, O’Rourke M, Park JB, Schillaci G, Sillesen H, Townsend RR. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis. 2015;241:507–32.CrossRefGoogle Scholar
  61. 61.
    Lorenz MW, Polak JF, Kavousi M, Mathiesen EB, Volzke H, Tuomainen TP, Sander D, Plichart M, Catapano AL, Robertson CM, Kiechl S, Rundek T, Desvarieux M, Lind L, Schmid C, Dasmahapatra P, Gao L, Ziegelbauer K, Bots ML, Thompson SG, Group P-IS. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet. 2012;379:2053–62.CrossRefGoogle Scholar
  62. 62.
    den Ruijter HM, Peters SA, Anderson TJ, Britton AR, Dekker JM, Eijkemans MJ, Engstrom G, Evans GW, de Graaf J, Grobbee DE, Hedblad B, Hofman A, Holewijn S, Ikeda A, Kavousi M, Kitagawa K, Kitamura A, Koffijberg H, Lonn EM, Lorenz MW, Mathiesen EB, Nijpels G, Okazaki S, O'leary DH, Polak JF, Price JF, Robertson C, Rembold CM, Rosvall M, Rundek T, Salonen JT, Sitzer M, Stehouwer CD, Witteman JC, Moons KG, Bots ML. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA. 2012;308:796–803.CrossRefGoogle Scholar
  63. 63.
    Polak JF, Szklo M, Kronmal RA, Burke GL, Shea S, Zavodni AE, O’leary DH. The value of carotid artery plaque and intima-media thickness for incident cardiovascular disease: the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2013;2:e000087.CrossRefGoogle Scholar
  64. 64.
    Kozakova M, Palombo C, Morizzo C, Nolan JJ, Konrad T, Balkau B, Investigators, R. Effect of sedentary behaviour and vigorous physical activity on segment-specific carotid wall thickness and its progression in a healthy population. Eur Heart J. 2010;31:1511–9.CrossRefGoogle Scholar
  65. 65.
    Nordstrom CK, Dwyer KM, Merz CN, Shircore A, Dwyer JH. Leisure time physical activity and early atherosclerosis: the Los Angeles Atherosclerosis Study. Am J Med. 2003;115:19–25.CrossRefGoogle Scholar
  66. 66.
    Homma S, Hirose N, Ishida H, Ishii T, Araki G. Carotid plaque and intima-media thickness assessed by b-mode ultrasonography in subjects ranging from young adults to centenarians. Stroke. 2001;32:830–5.CrossRefGoogle Scholar
  67. 67.
    Rosvall M, Persson M, Ostling G, Nilsson PM, Melander O, Hedblad B, Engstrom G. Risk factors for the progression of carotid intima-media thickness over a 16-year follow-up period: the Malmo Diet and Cancer Study. Atherosclerosis. 2015;239:615–21.CrossRefGoogle Scholar
  68. 68.
    Schmidt-Trucksäss A, Grathwohl D, Schmid A, Boragk R, Upmeier C, Keul J, Huonker M. Structural, functional, and hemodynamic changes of the common carotid artery with age in male subjects. Arterioscler Thromb Vasc Biol. 1999;19:1091–7.CrossRefGoogle Scholar
  69. 69.
    Rauramaa R, Halonen P, Vaisanen SB, Lakka TA, Schmidt-Trucksäss A, Berg A, Penttila IM, Rankinen T, Bouchard C. Effects of aerobic physical exercise on inflammation and atherosclerosis in men: the DNASCO Study: a six-year randomized, controlled trial. Ann Intern Med. 2004;140:1007–14.CrossRefGoogle Scholar
  70. 70.
    Wildman RP, Schott LL, Brockwell S, Kuller LH, Sutton-Tyrrell K. A dietary and exercise intervention slows menopause-associated progression of subclinical atherosclerosis as measured by intima-media thickness of the carotid arteries. J Am Coll Cardiol. 2004;44:579–85.CrossRefGoogle Scholar
  71. 71.
    Mang C. Effect of complex lifestyle intervention on common carotid intima-media thickness. Doctoral thesis, University of Freiburg; 2013.Google Scholar
  72. 72.
    Byrkjeland R, Stensaeth KH, Anderssen S, Njerve IU, Arnesen H, Seljeflot I, Solheim S. Effects of exercise training on carotid intima-media thickness in patients with type 2 diabetes and coronary artery disease. Influence of carotid plaques. Cardiovasc Diabetol. 2016;15:13.CrossRefGoogle Scholar
  73. 73.
    Olson TP, Dengel DR, Leon AS, Schmitz KH. Moderate resistance training and vascular health in overweight women. Med Sci Sports Exerc. 2006;38:1558–64.CrossRefGoogle Scholar
  74. 74.
    Liuba P, Persson J, Luoma J, Yla-Herttuala S, Pesonen E. Acute infections in children are accompanied by oxidative modification of LDL and decrease of HDL cholesterol, and are followed by thickening of carotid intima-media. Eur Heart J. 2003;24:515–21.CrossRefGoogle Scholar
  75. 75.
    Garcia-Hermoso A, Gonzalez-Ruiz K, Triana-Reina HR, Olloquequi J, Ramirez-Velez R. Effects of exercise on carotid Arterial Wall thickness in obese pediatric populations: a meta-analysis of randomized controlled trials. Child Obes. 2017;13:138–45.CrossRefGoogle Scholar
  76. 76.
    Belcaro G, Nicolaides AN, Laurora G, Cesarone MR, de Sanctis M, Incandela L, Barsotti A. Ultrasound morphology classification of the arterial wall and cardiovascular events in a 6-year follow-up study. Arterioscler Thromb Vasc Biol. 1996;16:851–6.CrossRefGoogle Scholar
  77. 77.
    Schmidt-Trucksäss A, Sandrock M, Cheng DC, Muller HM, Baumstark MW, Rauramaa R, Berg A, Huonker M. Quantitative measurement of carotid intima-media roughness--effect of age and manifest coronary artery disease. Atherosclerosis. 2003;166:57–65.CrossRefGoogle Scholar
  78. 78.
    Sandrock M, Schulze C, Schmitz D, Dickhuth HH, Schmidt-Trucksaess A. Physical activity throughout life reduces the atherosclerotic wall process in the carotid artery. Br J Sports Med. 2008;42:839–44.CrossRefGoogle Scholar
  79. 79.
    Dalla Pozza R, Pirzer R, Beyerlein A, Weberruss H, Oberhoffer R, Schmidt-Trucksäss A, Netz H, Haas N. Beyond intima-media-thickness: analysis of the carotid intima-media-roughness in a paediatric population. Atherosclerosis. 2016;251:164–9.CrossRefGoogle Scholar
  80. 80.
    Ghasemi A, Zahediasl S. Is nitric oxide a hormone? Iran Biomed J. 2011;15:59–65.Google Scholar
  81. 81.
    Avolio A. Arterial stiffness. Pulse (Basel). 2013;1:14–28.CrossRefGoogle Scholar
  82. 82.
    London GM, Pannier B. Arterial functions: how to interpret the complex physiology. Nephrol Dial Transplant. 2010;25:3815–23.CrossRefGoogle Scholar
  83. 83.
    Weber T, Auer J, O'rourke MF, Kvas E, Lassnig E, Berent R, Eber B. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004;109:184–9.CrossRefGoogle Scholar
  84. 84.
    O'rourke MF, Staessen JA, Vlachopoulos C, Duprez D, Plante GE. Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens. 2002;15:426–44.CrossRefGoogle Scholar
  85. 85.
    Schmitt M, Avolio A, Qasem A, Mceniery CM, Butlin M, Wilkinson IB, Cockcroft JR. Basal NO locally modulates human iliac artery function in vivo. Hypertension. 2005;46:227–31.CrossRefGoogle Scholar
  86. 86.
    Fishbein MC, Fishbein GA. Arteriosclerosis: facts and fancy. Cardiovasc Pathol. 2015;24:335–42.CrossRefGoogle Scholar
  87. 87.
    Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol. 2011;57:1511–22.CrossRefGoogle Scholar
  88. 88.
    Munakata M. Brachial-ankle pulse wave velocity: background, method, and clinical evidence. Pulse (Basel). 2016;3:195–204.CrossRefGoogle Scholar
  89. 89.
    Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, Chen CH, Cruickshank JK, Hwang SJ, Lakatta EG, Laurent S, Maldonado J, Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, Shokawa T, Sutton-Tyrell K, Verbeke F, Wang KL, Webb DJ, Willum Hansen T, Zoungas S, Mceniery CM, Cockcroft JR, Wilkinson IB. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.CrossRefGoogle Scholar
  90. 90.
    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.CrossRefGoogle Scholar
  91. 91.
    Aoyagi Y, Park H, Kakiyama T, Park S, Yoshiuchi K, Shephard RJ. Yearlong physical activity and regional stiffness of arteries in older adults: the Nakanojo Study. Eur J Appl Physiol. 2010;109:455–64.CrossRefGoogle Scholar
  92. 92.
    Gando Y, Yamamoto K, Murakami H, Ohmori Y, Kawakami R, Sanada K, Higuchi M, Tabata I, Miyachi M. Longer time spent in light physical activity is associated with reduced arterial stiffness in older adults. Hypertension. 2010;56:540–6.CrossRefGoogle Scholar
  93. 93.
    Endes S, Schaffner E, Caviezel S, Dratva J, Autenrieth CS, Wanner M, Martin B, Stolz D, Pons M, Turk A, Bettschart R, Schindler C, Kunzli N, Probst-Hensch N, Schmidt-Trucksäss A. Physical activity is associated with lower arterial stiffness in older adults: results of the SAPALDIA 3 Cohort Study. Eur J Epidemiol. 2016;31:275–85.CrossRefGoogle Scholar
  94. 94.
    Endes S, Schaffner E, Caviezel S, Dratva J, Autenrieth CS, Wanner M, Martin B, Stolz D, Pons M, Turk A, Bettschart R, Schindler C, Kunzli N, Probst-Hensch N, Schmidt-Trucksäss A. Long-term physical activity is associated with reduced arterial stiffness in older adults: longitudinal results of the SAPALDIA cohort study. Age Ageing. 2016;45:110–5.CrossRefGoogle Scholar
  95. 95.
    Huang C, Wang J, Deng S, She Q, Wu L. The effects of aerobic endurance exercise on pulse wave velocity and intima media thickness in adults: a systematic review and meta-analysis. Scand J Med Sci Sports. 2016;26:478–87.CrossRefGoogle Scholar
  96. 96.
    Li Y, Hanssen H, Cordes M, Rossmeissl A, Endes S, Schmidt-Trucksäss A. Aerobic, resistance and combined exercise training on arterial stiffness in normotensive and hypertensive adults: a review. Eur J Sport Sci. 2015;15:443–57.CrossRefGoogle Scholar
  97. 97.
    Miyachi M, Kawano H, Sugawara J, Takahashi K, Hayashi K, Yamazaki K, Tabata I, Tanaka H. Unfavorable effects of resistance training on central arterial compliance: a randomized intervention study. Circulation. 2004;110:2858–63.CrossRefGoogle Scholar
  98. 98.
    Okamoto T, Masuhara M, Ikuta K. Upper but not lower limb resistance training increases arterial stiffness in humans. Eur J Appl Physiol. 2009;107:127–34.CrossRefGoogle Scholar
  99. 99.
    Okamoto T, Masuhara M, Ikuta K. Effects of eccentric and concentric resistance training on arterial stiffness. J Hum Hypertens. 2006;20:348–54.CrossRefGoogle Scholar
  100. 100.
    Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.CrossRefGoogle Scholar
  101. 101.
    Ogasawara R, Sato K, Matsutani K, Nakazato K, Fujita S. The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2014;306:E1155–62.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Sports and Exercise Medicine, Department of Sport, Exercise and HealthUniversity of BaselBaselSwitzerland

Personalised recommendations