Advertisement

Obesity-Hypertension Physiopathology and Treatment: A Forty-Year Retrospect

  • Jonathan Owen
  • Stephen Morse
  • Angela McLean
  • Efrain Reisin
Chapter
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)

Abstract

During the past 40 years of research into obesity, hypertension, and chronic kidney disease, we have gained considerable knowledge on the effects of excess weight gain to alter numerous metabolic and hormonal processes, which can ultimately result in type 2 diabetes, hypertension, cardiovascular disease, and chronic kidney failure. Over this span of time, we have witnessed the naming of these metabolic and hormonal alterations as a new condition, the Metabolic Syndrome. Additionally, we have noted that hypertension in obesity appears to have some unique differences to essential hypertension in the normal weight population, and have preferred the term Obesity-Hypertension in our description of this process. The obesity epidemic worldwide has continued to surge unabated resulting in the search for new ways to reduce body weight by dietary means, pharmaceutical means, and surgical intervention. This review will focus on an overview of this condition from insights gained over the preceding 40 plus years of research and clinical experience in this field, with an emphasis on Obesity-Hypertension and therapeutic options.

Keywords

Obesity-hypertension Metabolic syndrome Insulin resistance Visceral adiposity Chronic kidney disease Dyslipidemia Microalbuminuria RAAS Leptin Ghrelin SNS Bariatric surgery Weight loss 

References

  1. 1.
    World Health Organization. Obesity: preventing and managing the global epidemic. In: World Health Organization; 2000.Google Scholar
  2. 2.
    Centers for Disease Control and Prevention. Defining overweight and obesity. https://www.cdc.gov/obesity/adult/defining.html.
  3. 3.
    Sturm R. Increases in morbid obesity in the USA: 2000–2005. Public Health. 2007;121(7):492–6.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kyle UG, Schutz Y, Dupertuis YM, Pichard C. Body composition interpretation: contributions of the fat-free mass index and the body fat mass index. Nutrition. 2003;19(7–8):597–604.CrossRefPubMedGoogle Scholar
  5. 5.
    Garrow JS, Webster J. Quetelet’s Index (W/H2) as a measure of fatness. Int J Obes (Lond). 1985;9(2):147–53.Google Scholar
  6. 6.
    Owen J, Reisin E. Non-communicable disease: a welcome and long needed addition to the WHO’s 2012 World Health Statistics. Curr Hypertens Rep. 2012;14(6):475–7.CrossRefPubMedGoogle Scholar
  7. 7.
    World Health Organizataion. World Health Statistics 2012. http://www.who.int/gho/publications/world_health_statistics/EN_WHS2012_Full.pdf.
  8. 8.
    Haslam DW, James WP. Obesity. Lancet. 2005;366(9492):1197–209.CrossRefPubMedGoogle Scholar
  9. 9.
    Stamler R, Stamler J, Riedlinger WF, Algera G, Roberts RH. Weight and blood pressure: findings in hypertension screening of 1 million Americans. JAMA. 1978;240(15):1607–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Krauss RM, Winston M, Fletcher BJ, Grundy SM. Obesity: impact on cardiovascular disease. Circulation. 1998;98(14):1472–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Vague J. La differenciation sexuelle; facteur determinant des formes de l’obesite. La Presse Medicale. 1947;55(30):339.PubMedGoogle Scholar
  12. 12.
    Kannel WB, Brand N, Skinner JJ Jr, Dawber TR, McNamara PM. The relation of adiposity to blood pressure and the development of hypertension: the Framingham study. Ann Intern Med. 1967;67(1):48–59.CrossRefPubMedGoogle Scholar
  13. 13.
    Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Kotani K, Tokunaga K. Pathophysiology and pathogenesis of visceral fat obesity. Obes Res. 1995;3(Suppl 2):S187–94.CrossRefGoogle Scholar
  14. 14.
    Hayashi T, Boyko EJ, Leonetti DL, McNeely MJ, Newell-Morris L, Kahn SE, Fujimoto WY. Visceral adiposity is an independent predictor of hypertension in Japanese Americans. Ann Intern Med. 2004;140(12):992–1000.CrossRefPubMedGoogle Scholar
  15. 15.
    Peiris AN, Sothmann MS, Hoffmann RG, Hennes MI, Wilson CR, Gustafson AB, Kissebah AH. Adiposity, fat distribution, and cardiovascular risk. Ann Intern Med. 1989;110(11):867–72.CrossRefPubMedGoogle Scholar
  16. 16.
    Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.CrossRefGoogle Scholar
  17. 17.
    de Simone G, Devereux RB, Roman MJ, Alderman MH, Laragh JH. Relation of obesity and gender to left ventricular hypertrophy in normotensive and hypertensive adults. Hypertension. 1994;23(5):600–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Griffen KA. Hypertensive kidney injury and the progression of chronic kidney disease. Hypertension. 2017;70:687–94.CrossRefGoogle Scholar
  19. 19.
    Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59(4):1498–509.CrossRefPubMedGoogle Scholar
  20. 20.
    Good D, Morse SA, Ventura HO, Reisin E. Obesity, hypertension, and the heart. J Cardiometab Syndr. 2008;3:168–72.CrossRefPubMedGoogle Scholar
  21. 21.
    Morse S, Zhang R, Thakur V, Reisin E. Hypertension and the metabolic syndrome. Am J Med Sci. 2005;330(6):303–10.CrossRefPubMedGoogle Scholar
  22. 22.
    Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41:625–33.CrossRefPubMedGoogle Scholar
  23. 23.
    Hall JE, Brands MW, Dixon WN, Smith MJ. Obesity induced hypertension: renal function and systemic hemodynamics. Hypertension. 1993;22(3):292–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Thakur V, Morse S and Reisin E. “Functional and structural renal changes in the early stages of obesity” Wolf G 9ed Obesity and the Kidney Contrib. Nephrol. Basel, Karger; 2006, vol 151, pp 135-150.Google Scholar
  25. 25.
    Kotchen T. Obesity-related hypertension: epidemiology, pathophysiology, and clinical management. Am J Hypertens. 2010;23(11):1170–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Segal-Lieberman G, Rosenthal T. Animal models in obesity and hypertension. Curr Hypertens Rep. 2013;15:190–5.CrossRefPubMedGoogle Scholar
  27. 27.
    DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol. 2014;10:364–76.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Singer GM, Setaro JF. Secondary hypertension—obesity and the metabolic syndrome. J Clin Hypertens. 2008;10(7):567–74.CrossRefGoogle Scholar
  29. 29.
    Rahmouni K, Correia MLG, Haynes WG, Mark AL. Obesity-associated hypertension: new insights into mechanisms. Hypertension. 2005;45:9–14.CrossRefPubMedGoogle Scholar
  30. 30.
    Guyton AC, Coleman TG, Cowley AV Jr, Scheel KW, Manning RD Jr, Norman RA Jr. Arterial pressure regulation: overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972;52(5):584–94.CrossRefPubMedGoogle Scholar
  31. 31.
    Reisin E, Messerli FG, Ventura HO, Frohich ED. Renal haemodynamic studies in obesity hypertension. J Hypertens. 1987;5:397–400.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Reisin E, Suarez DH, Frolich ED. Haemodynamic changes associated with obesity and high blood pressure in rats with ventromedial hypothalamic lesions. Clin Sci. 1980;59:397s–9s.CrossRefPubMedGoogle Scholar
  33. 33.
    Carroll JF, Huang M, Hester RL, Cockrell KH, Mizelle L. Hemodynamic alterations in hypertensive obese rabbits. Hypertension. 1995;26:465–70.CrossRefPubMedGoogle Scholar
  34. 34.
    Owen JG, Reisin E. Anti-hypertensive drug treatment of patients with the metabolic syndrome and obesity: a review of evidence, meta-analysis, post hoc and guidelines publications. Curr Hypertens Rep. 2015;17:46.CrossRefGoogle Scholar
  35. 35.
    Marcus Y, Shefer G, Stern N. Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol. 2013;378:1–14.CrossRefPubMedGoogle Scholar
  36. 36.
    Grassi G. Sympathetic overdrive and cardiovascular risk in the metabolic syndrome. Hypertens Res. 2006;29:839–47.CrossRefPubMedGoogle Scholar
  37. 37.
    Trossi RJ, Weiss ST, Parker DR, Sparrow D, Young JB, Landsberg L. Relation of obesity and diet to sympathetic nervous system activity. Hypertension. 1991;17:669–77.CrossRefGoogle Scholar
  38. 38.
    Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfanchi A, Colombo M, Giannattasio C, Brunani A, Cavagnini F, Mancia G. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25:560–3.CrossRefPubMedGoogle Scholar
  39. 39.
    DiBona GF. Sympathetic nervous system and hypertension. Hypertension. 2013;61:556–60.CrossRefPubMedGoogle Scholar
  40. 40.
    Kalil GZ, Haynes WG. Sympathetic nervous system in obesity-related hypertension—mechanisms and clinical implications. Hypertens Res. 2012;35(1):4–16.CrossRefPubMedGoogle Scholar
  41. 41.
    Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Investig. 1991;87:2246–52.CrossRefPubMedGoogle Scholar
  42. 42.
    Anderson EA, Balon TW, Hoffman RP, Sinkey CA, Mark AL. Insulin increases sympathetic activity but not blood pressure in borderline hypertensive humans. Hypertension. 1992;19(6):621–67.CrossRefPubMedGoogle Scholar
  43. 43.
    Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities—the role of insulin resistance and the sympathoadrenal system. N Engl J Med. 1996;334(6):374–81.CrossRefPubMedGoogle Scholar
  44. 44.
    Kazumi T, Kawaquchi A, Katoh J, Iwahashi M, Yoshino G. Fasting insulin and leptin serum levels are associated with systolic blood pressure independent of percentage body fat and body mass index. J Hypertens. 1999;17(10):1451–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Park SE, Rhee EJ, Park CY, Oh KY, Park SW, Kim SW, Lee WY. Impact of hyperinsulinemia in the development of normotensive, nondiabetic adults: a 4 year follow up study. Metabolism. 2013;62(4):532–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, Mckee LJ, Bauer TL, Caro JF. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Bravo PE, Morse S, Borne DM, Aguilar EA, Reisin E. Leptin and hypertension in obesity. Vasc Health Risk Manag. 2006;2(2):163–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Surwit RS. Role of leptin in fat regulation. Nature. 1996;380(6576):677.CrossRefPubMedGoogle Scholar
  49. 49.
    da Silva AA, do Carmo JM, Wang Z, Hall JE. The brain melanocortin system, sympathetic control, and obesity hypertension. Physiology. 2014;29:196–202.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S, Smith G, Stec DE. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 2010;285(23):17,271–6.CrossRefGoogle Scholar
  51. 51.
    Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P, Wanger AJ, DePaoli AM Reitman ML, Taylor SI, Gorden P, Garg A. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346(8):570–80.CrossRefPubMedGoogle Scholar
  52. 52.
    Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, DePaoli AM, O’Rahily S. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Investig. 2002;110(8):1093–103.CrossRefPubMedGoogle Scholar
  53. 53.
    Paz-Filho G, Mastronardi CA, Licinio J. Leptin treatment: facts and expectations. Metabolism. 2015;64(1):146–56.CrossRefPubMedGoogle Scholar
  54. 54.
    Vatier C, Fetita S, Boudou P, Tchankou C, Deville L, Riveline J, Young J, Mathivon L, Travert F, Morin D, Cahen J, Lascols O, Andreeli F, Reznik Y, Mongeois E, Madeline I, Vantyghem M, Gautier J, Vigouroux C. One-year metreleptin improves insulin secretion in patients with diabetes linked to genetic lipodystrophic syndromes. Diabetes Obes Metab. 2016;18(7):693–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Belin de Chanteme’le EJ, Mintz JD, Rainey WE, Stepp DW. Impact of leptin-mediated sympatho-activation on cardiovascular function in obese mice. Hypertension. 2011;58:271–9.CrossRefGoogle Scholar
  56. 56.
    da Silva AA, Kuo JJ, Hall JE. Role of hypothalamic melanocortin ¾-receptors in mediating chronic cardiovascular, renal, and metabolic actions of leptin. Hypertension. 2004;43(6):1312–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Tallam LS, da Silva AA, Hall JE. Melanocortin-4 receptor mediates chronic cardiovascular and metabolic actions of leptin. Hypertension. 2006;48(1):58–64.CrossRefPubMedGoogle Scholar
  58. 58.
    do Carmo JM, da Silva AA, Cai Z, Lin S, Dubinion JH, Hall JE. Control of blood pressure, appetite, and glucose in mice lacking leptin receptors in proopiomelanocortin neurons. Hypertension. 2011;57(5):918–26.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension. 1998;31:409–14.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Aizawa-Abe M, Ogawa Y, Masuzaki H, Ebihara K, Satoh N, Iwai H, Matsuoka N, Hayashi T, Hosoda K, Inoue G, Yoshimasa Y, Nakao K. Pathophysiological role of leptin in obesity-related hypertension. J Clin Investig. 2000;105:1243–52.CrossRefPubMedGoogle Scholar
  61. 61.
    Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96:1897–904.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Calhoun DA. Obstructive sleep apnea and hypertension. Curr Hypertens Rep. 2010;12:189–95.CrossRefPubMedGoogle Scholar
  63. 63.
    Borgel J, Sanner BM, Keskin F, Bittlinsky A, Bartels NK, Buchner N, Huesing A, Rump LC, Mugge A. Obstructive sleep apnea and blood pressure: Interaction between the blood pressure-lowering effects of positive airway pressure therapy and antihypertensive drugs. Am J Hypertens. 2004;17:1081–7.CrossRefPubMedGoogle Scholar
  64. 64.
    Dudenbostel T, Calhoun DA. Resistant hypertension, obstructive sleep apnoea, and aldosterone. J Hum Hypertens. 2012;26(5):281–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Abdel-Kader K, Dohar S, Shah N, Jhamb M, Reis SE, Strollo P, Buysse D, Unruh ML. Resistant hypertension and obstructive sleep apnea in the setting of kidney disease. J Hypertens. 2012;30(5):960–6.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Owen J, Reisin E. Obstructive sleep apnea and hypertension: is the primary link simply volume overload. Curr Hypertens Rep. 2013;15:131–3.CrossRefPubMedGoogle Scholar
  67. 67.
    Karlsson C, Lindell K, Ottosson M, Sjostrom L, Carlsson B, Carlsson LM. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J Clin Endocrinol Metabol. 1998;83(11):3925–9.Google Scholar
  68. 68.
    Engeli S, Gorzelniak K, Kreutz R, Runkel N, Distler A, Sharma AM. Co-expression of renin-angiotensin system genes in human adipose tissue. J Hypertens. 1999;17(4):555–60.CrossRefPubMedGoogle Scholar
  69. 69.
    Achard V, Boullu-Ciocca S, Desbriere R, Nguyen G, Grino M. Renin receptor expression in human adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R274–82.CrossRefPubMedGoogle Scholar
  70. 70.
    Kouyama R, Suganami T, Nishida J, Tanaka M, Toyoda T, Kiso M, Chiwata T, Miyamoto Y, Yoshimasa Y, Fukamizu A, Horiuchi M, Hirata Y, Ogawa Y. Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin II type 1a receptor. Endocrinology. 2005;146(8):3481–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Yvan-Charvet L, Even P, Bloch-Faure M, Guerre-Millo M, Moustaid-Moussa N, Ferre P, Quignard-Boulange A. Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes. 2005;54:991–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Massiera F, Seydoux J, Geloen A, Quignard-Boulange A, Turban S, Saint-Marc P, Fukamizu A, Negrel R, Ailhaud G, Teboul M. Angiotensinogen-deficient mice exhibit impairment of diet-induced weight gain with alteration in adipose tissue development and increased locomotor activity. Endocrinology. 2001;142(12):5220–5.CrossRefPubMedGoogle Scholar
  73. 73.
    Massiera F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, Quignard-Boulange A, Negrel R, Ailhaud G, Seydoux J, Meneton P, Teboul M. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 2001;15(14):2727–9.CrossRefPubMedGoogle Scholar
  74. 74.
    Yiannikouris F, Gupte M, Putnam K, Thatcher S, Charnigo R, Rateri DL, Daugherty A, Cassis LA. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension. 2012;60:1524–30.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I. Adipose tissue hypoxia and its impact on adipocytokine dysregulation. Diabetes. 2007;56:901–11.CrossRefPubMedGoogle Scholar
  76. 76.
    Wree A, Mayer A, Westphal S, Beilfuss A, Canbay A, Schick RR, Gerken G, Vaupel P. Adipokine expression in brown and white adipocytes in response to hypoxia. J Endocrinol Invest. 2012;35(5):522–7.PubMedGoogle Scholar
  77. 77.
    Yasue S, Masuzaki H, Okada S, Ishii T, Kozuka C, Tanaka T, Fujikura J, Ebihara K, Hosoda K, Katsurada A, Ohashi N, Urushihara M, Kobori H, Morimoto N, Kawazoe T, Naitoh M, Okada M, Sakaue H, Suzuki S, Nakao K. Adipose tissue-specific regulation of angiotensinogen in obese humans and mice: impact of nutritional status and adipocyte hypertrophy. Am J Hypertens. 2010;23(4):425–31.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Yvan-Charvet L, Quignard-Boulange A. Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int. 2011;79:162–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Van Harmelen V, Ariapart P, Hoffstedt J, Lundkvist I, Bringman S, Arner P. Increased adipose angiotensinogen gene expression in human obesity. Obes Res. 2000;8(4):337–41.CrossRefPubMedGoogle Scholar
  80. 80.
    Foster MC, Hwang SJ, Porter SA, Massaro JM, Hoffmann U, Fox CS. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension. 2011;58:784–90.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Chandra A, Neeland IJ, Berry JD, Ayers CR, Rohatgi A, Das SR, Khera A, McGuire DK, de Lemos JA, Turer AT. The relationship of body mass and fat distribution with incident hypertension: observations from the Dallas Heart Study. J Am Coll Cardiol. 2014;64:997–1002.CrossRefPubMedGoogle Scholar
  82. 82.
    Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, Correa JW, Gagnon AM, Gomez-Sanchez CE, Gomez-Sanchez EP, Sorisky A, Ooi TC, Ruzicka M, Burns KD, Touyz RM. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012;59:1069–78.CrossRefPubMedGoogle Scholar
  83. 83.
    Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Bader M, Luft FC, Sharma AM. Weight loss and the renin-angiotensin-aldosterone system. Hypertension. 2005;45(3):356–62.CrossRefPubMedGoogle Scholar
  84. 84.
    Dubenostel T, Ghazi L, Liu M, Li P, Oparil S, Calhoun DA. Body mass index predicts 24-hour urinary aldosterone levels in patients with resistant hypertension. Hypertension. 2015;68(4):995–1003.Google Scholar
  85. 85.
    Laffin LJ, Majewski C, Liao C, Bakris G. Relationship between obesity, hypertension, and aldosterone production in postmenopausal Africa American Women: a pilot study. J Clin Hypertens. 2016;18(12):1216–21.CrossRefGoogle Scholar
  86. 86.
    Goodfriend TL, Egan BM, Kelley DE. Aldosterone in obesity. Endocr Res. 1998;24(3):789–96.CrossRefPubMedGoogle Scholar
  87. 87.
    Rossi GP, Belfiore A, Bernini G, Fabris B, Caridi G, Ferri C, Giacchetti G, Letizia C, Maccario M, Mannelli M, Palumbo G, Patalano A, Rizzoni D, Rossi E, Pessina AC, Mantero F, Primary Aldosteronism Prevalence in Hypertension Study Investigators. Body mass index predicts plasma aldosterone concentrations in overweight-obese primary hypertensive patients. J Clin Endocrinol Metabol. 2008;93(7):2566–71.CrossRefGoogle Scholar
  88. 88.
    Brown NJ. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol. 2013;9(8):459–69.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollaq WB, Filosa JA, Belin de Chanemele EJ. Adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation. 2015;132(22):2134–45.CrossRefPubMedGoogle Scholar
  90. 90.
    Buglioni A, Cannone V, Sangaralingham SJ, Heublein DM, Scott CG, Bailey KR, Rodeheffer RJ, Sarzani R, Burnett JC. Aldosterone predicts cardiovascular, renal and metabolic disease in the general community: a 4-year follow up. J Am Heart Assoc. 2015;4(12):pii: e002505.CrossRefGoogle Scholar
  91. 91.
    de Souza F, Muxfeldt E, Fiszman R, Salles G. Efficacy of spironolactone therapy in patients with true resistant hypertension. Hypertension. 2010;55:147–52.CrossRefPubMedGoogle Scholar
  92. 92.
    Henegar JR, Zhang Y, De Rama R, Hata C, Hall ME, Hall JE. Catheter based radiofrequency renal denervation lowers blood pressure in obese hypertensive dogs. Am J Hypertens. 2014;27(10):1285–92.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Coehn SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL, Symplicity HTN-3 Investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Coppolino G, Pisano A, Rivoli L, Bolignano D. Renal denervation for resistant hypertension. Cochrane Database Syst Rev. 2017;2:CD011499.PubMedGoogle Scholar
  95. 95.
    Wofford MR, Anerson DC Jr, Brown CA, Jones DW, Miller ME, Hall JE. Antihypertensive effect of alpha- and beta- adrenergic blockade in obese and lean hypertensive subjects. Am J Hypertens. 2001;14(7):694–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Lilleness BM, Frishman WH. Ghrelin and the cardiovascular system. Cardiol Rev. 2016;24:288–97.CrossRefPubMedGoogle Scholar
  97. 97.
    Lambert E, Lamber G, Ika-Sari C, Dawood T, Lee K, Chopra R, Straznicky N, Eikelis N, Drew S, Tilbrook A, Dixon J, Esler M, Schlaich MP. Ghrelin modulates sympathetic nervous system activity and stress response in lean and overweight men. Hypertension. 2011;58(1):43–50.CrossRefPubMedGoogle Scholar
  98. 98.
    Tschop M, Weyer C, Tataranni PA, Devanarayan V, Rayussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50:707–9.CrossRefPubMedGoogle Scholar
  99. 99.
    Wang Y, Liu J. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy. Obes Surg. 2009;19:357–62.CrossRefPubMedGoogle Scholar
  100. 100.
    Hady HR, Golaszewski P, Zbucki RL, Dadan J. The influence of laparoscopic adjustable gastric banding and laparoscopic sleeve gastrectomy on weight loss, plasma ghrelin, insulin, glucose and lipis. Folia Histochem Cytobiol. 2012;50:292–303.CrossRefPubMedGoogle Scholar
  101. 101.
    Sista F, Abruzzese V, Clementi M, Carandina S, Amicucci G. Effect of resected gastric volume of ghrelin and GLP-1 plasma levels: a prospective study. J Gastrointest Surg. 2016;20:1931–41.CrossRefPubMedGoogle Scholar
  102. 102.
    Owen JG, Yazdi F, Reisin E. Bariatric surgery and hypertension. Am J Hypertens. 2017;31:11–7. Epub ahead of print.  https://doi.org/10.1093/ajh/hpx112.CrossRefPubMedGoogle Scholar
  103. 103.
    Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2137–57.CrossRefGoogle Scholar
  104. 104.
    Wang B, Zhong J, Lin H, Zhao Z, Yan Z, He H, Ni Y, Liu D, Zhu Z. Blood pressure- lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes Metab. 2013;15(8):737–49.CrossRefGoogle Scholar
  105. 105.
    Goud A, Zhong J, Peters M, Brook RD, Rajagopalan S. GLP-1 agonists and blood pressure: a review of the evidence. Curr Hypertens Rep. 2016;18(2):16.CrossRefPubMedGoogle Scholar
  106. 106.
    Okerson T, Yan P, Stonehouse A, Brodows R. Effects of exenatide on systolic blood pressure in subjects with type 2 diabetes. Am J Hypertens. 2010;23(3):334–9.CrossRefPubMedGoogle Scholar
  107. 107.
    Robinson LE, Holt TA, Rees K, Randeva HS, O’Hare JP. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ Open. 2013;3(1):e001986.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Krisai P, Aeschbacher S, Schoen T, Bossard M, van der Stouwe JG, Dorig L, Todd J, Estis J, Risch M, Risch L, Conen D. Glucgon-like peptide-1 and blood pressure in young and healthy adults from the general population. Hypertension. 2015;65:306–12.CrossRefPubMedGoogle Scholar
  109. 109.
    Yamamoto H, Lee CH, Marcus JN, Williams TD, Overton JM, Lopez ME, Hollenberg AN, Baggio L, Saper CB, Drucker DJ, Elmquist JK. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Investig. 2002;110(1):43–52.CrossRefPubMedGoogle Scholar
  110. 110.
    Barragan JM, Rodriguez RE, Blazquez E. Changes in arterial blood pressure and heart rate induced by glucagon-like peptide-1-(7-36) amide in rats. Am J Physiol. 1994;266(3):459–66.Google Scholar
  111. 111.
    Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, Simpson JA, Drucker DJ. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013;19(5):567–75.CrossRefPubMedGoogle Scholar
  112. 112.
    Takahashi N, Anan F, Nakagawa M, Yufu K, Shinohara T, Tsubone T, Goto K, Masaki T, Katsuragi I, Tanaka K, Kakuma T, Hara M, Saikawa T, Yoshimatus H. Hypoadiponectinemia in type 2 diabetes mellitus in men is associated with sympathetic overactivity as evaluated by cardiac 123I-metaiodobenzylguanidine scintigraphy. Metabolism. 2007;56(7):919–24.CrossRefPubMedGoogle Scholar
  113. 113.
    Vasunta RL, Kesaniemi YA, Ukkola O. Plasma adiponectin concentration is associated with ambulatory daytime systolic blood pressure but not with the dipping status. J Hum Hypertens. 2010;24(8):545–51.CrossRefPubMedGoogle Scholar
  114. 114.
    Kim DH, Kim C, Ding EL, Townsend MK, Lipsitz LA. Adiponectin levels and the risk of hypertension: a systematic review and meta-analysis. Hypertension. 2013;62(1):27–32.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Reisin E, Abel R, Modan M, Silverberg DS, Eliahou HE, Modan B. Effect of weight loss without salt restriction on the reduction of blood pressure in overweight hypertensive patients. N Engl J Med. 1978;298(1):1–6.CrossRefPubMedGoogle Scholar
  116. 116.
    Dansigner ML, Gleason JA, Giffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA. 2005;293(1):43–5.CrossRefGoogle Scholar
  117. 117.
    Straznicky NE, Lambert EA, Lambert GW, Masu K, Esler MD, Nestel PJ. Effects of dietary weight loss on sympathetic activity and cardiac risk factors associated with the metabolic syndrome. J Clin Endocrinol Metabol. 2005;90(11):5998–6005.CrossRefGoogle Scholar
  118. 118.
    Busetto L, Sergi G, Enzi G, Segato G, De Marchi F, Foletto M, De Luca M, Pigozzo S, Favretti F. Short-term effects of weight loss on the cardiovascular risk factors in morbidly obese patients. Obes Res. 2004;12(8):1256–63.CrossRefPubMedGoogle Scholar
  119. 119.
    McTigue KM, Harris R, Hemphill B, Lux L, Sutton S, Bunton AJ, Lohr KN. Screening and interventions for obesity in adults: summary of the evidence for the U.S. Preventative Services Task Force. Ann Intern Med. 2003;139(11):933–49.CrossRefPubMedGoogle Scholar
  120. 120.
    Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA. 2003;289(14):1799–804.CrossRefPubMedGoogle Scholar
  121. 121.
    Miller ER 3rd, Erlinger TP, Young DR, Jehn M, Charleston J, Rhodes D, Wasan SK, Appel LJ. Results of the diet, exercise and weight loss intervention trial (DEW-It). Hypertension. 2002;40(5):612–8.CrossRefPubMedGoogle Scholar
  122. 122.
    Dalle Grave R, Melchionda N, Calugi S, Centis E, Tufano A, Fatati G, Fusco MA, Marchesini G. Countinues care in the treatment of obesity: an observational multicenter study. J Intern Med. 2005;258(3):265–73.CrossRefPubMedGoogle Scholar
  123. 123.
    Sundstrom J, Bruze G, Ottosson J, Marcus C, Naslund I, Neovius M. Weight loss and heart failure: a nationwide study of gastric bypass surgery versus intensive lifestyle treatment. Circulation. 2017;135(17):1577–85.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Motesi L, El Goch M, Brodosi L, Calugi S, Marchesini G, Dalle Grave R. Long-term weight loss maintenance for obesity: a multidisciplinary approach. Diabetes Metab Syndr Obes. 2017;9:37–46.Google Scholar
  125. 125.
    Bloch AS. Low carbohydrate diets, pro: time to rethink our current strategies. Nutr Clin Pract. 2005;20(1):3–12.CrossRefPubMedGoogle Scholar
  126. 126.
    Verheggen RJHM, Maessen MFH, Green DJ, Hermus ARMM, Hopman MTE, Thijssen DHT. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue. Obes Rev. 2016;17(8):664–90.CrossRefPubMedGoogle Scholar
  127. 127.
    Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2011;13:68–91.CrossRefPubMedGoogle Scholar
  128. 128.
    Goodpaster BH, Delany JP, Otto AD, Kuller L, Vockley J, South-Paul JE, Thomas SB, Brown J, McTigue K, Hames KC, Lang W, Jakicic JM. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA. 2010;304(16):1795–802.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Slentz CA, Bateman LA, Willis LH, Granville EO, Pinner LW, Samsa GP, Setji TL, Muehlbauer MJ, Huffman KM, Bales CW, Kraus WE. Effects of exercise training alone vs a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomized controlled trial. Diabetologia. 2016;59:2088–98.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2003;42:878–84.CrossRefPubMedGoogle Scholar
  131. 131.
    Staessen J, Fagard R, Amery A. The relationship between body weight and blood pressure. J Hum Hypertens. 1988;2(4):207–17.PubMedGoogle Scholar
  132. 132.
    Aucott L, Poobalan A, Smith WCS, Avenell A, Jung R, Broom J. Effects of weight loss in overweight/obese individuals and long-term hypertension outcomes: a systematic review. Hypertension. 2005;45:1035–41.CrossRefPubMedGoogle Scholar
  133. 133.
    Aucott L, Rothnie H, McIntyre L, Thapa M, Waweru C, Gray D. Long-term weight loss from lifestyle intervention benefits blood pressure: a systemtatic review. Hypertension. 2009;54:756–62.CrossRefPubMedGoogle Scholar
  134. 134.
    Semlitsch T, Jeitler K, Berghold A, Horvath K, Posch N, Poggenburg S, Siebenhofer A. Long-term effects of weight-reducing diets in people with hypertension. Cochrane Database Syst Rev. 2016;3:CD008274.PubMedGoogle Scholar
  135. 135.
    Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH, Karanja N, For the DASH Collaborative Research Group. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336(16):1117–24.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Lin PH, Allen JD, Li YJ, Yu M, Lien L, Svetky LP. Blood pressure-lowering mechanisms of the DASH dietary pattern. J Nutr Metab. 2012;2012:472396.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    McGregor RA, Poppitt SD. Milk protein for improved metabolic health: a review of the evidence. Nutr Metab. 2013;10:46.CrossRefGoogle Scholar
  138. 138.
    Blumenthal JA, Babyak MA, Hinderliter A, Watkins LL, Craighead L, Lin PH, Caccia C, Johnson J, Waugh R, Sherwood A. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women: the ENCORE study. Arch Intern Med. 2010;170(2):126–35.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Blumenthal JA, Babyak MA, Sherwood A, Craighead L, Lin PH, Johnson J, Watkins LL, Wang JT, Kuhn C, Feinglos M, Hinderliter A. Effects of the dietary approaches to stop hypertension diet alone and in combination with exercise and caloric restriction on insulin sensitivity and lipids. Hypertension. 2010;55:1199–205.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Shirani F, Salehi-Abargouei A, Azadbakht L. Effects of dietary approaches to stop hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition. 2013;29:939–47.CrossRefPubMedGoogle Scholar
  141. 141.
    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348(26):2599–608.CrossRefGoogle Scholar
  142. 142.
    Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, Gomez-Gracia E, Ruiz-Gutierrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pinto X, Basora J, Munoz MA, Soril JV, Martinez JA, Martinez-Gonzalez MA, PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.CrossRefGoogle Scholar
  143. 143.
    Domenech M, Roman P, Lapetra J, de la Corte FJ G, Sala-Vila A, de la Torre R, Corella D, Salas-Salvado J, Ruiz-Gutierrez V, Lamuela-Raventos RM, Toledo E, Estruch R, Coca A, Ros E. Mediterranean diet reduces 24-hour ambulatory blood pressure, blood glucose, and lipids: one-year randomized, clinical trial. Hypertension. 2014;64:69–76.CrossRefPubMedGoogle Scholar
  144. 144.
    Toledo E, Hu FB, Estruch R, Buil-Cosiales P, Corella D, Salas-Salvado J, Covas MI, Aros F, Gomez-Gracia E, Fiol M, Lapetra J, Serra-Majem L, Pinto X, Lamuela-Raventos RM, Saez G, Bullo M, Ruiz-Gutierrez V, Ros E, Sorli JV, Martinez-Gonzalez MA. Effect of the Mediterranean diet on blood pressure in the PREDIMED trial: results from a randomized controlled trial. BMC Med. 2013;11:207.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Gay HC, Rao SG, Vaccarino V, Ali MK. Effects of different dietary interventions on blood pressure: systematic review and meta-analysis of randomized controlled trials. Hypertension. 2016;67:733–9.CrossRefPubMedGoogle Scholar
  146. 146.
    St Jeor ST, Howard BV, Prewitt TE, Boyee V, Bazzare T, Eckel RH, Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association. Dietary protein and weight reduction: a statement for healthcare professionals from the Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association. Circulation. 2001;104(15):1869–74.CrossRefPubMedGoogle Scholar
  147. 147.
    Friedman AN, Ogden LG, Foster GD, Klein S, Stein R, Miller B, Hill JO, Brill C, Bailer B, Rosenbaum DR, Wyatt HR. Comparative effects of low-carbohydrate high protein versus low-fat diets on the kidney. Clin J Am Soc Nephrol. 2012;7(7):1103–11.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Brinkworth GD, Buckley JD, Noakes M, Clifton PM. Renal function following long-term weight loss in individuals with abdominal obesity on a very-low-carbohydrte diet vs high carbohydrate diet. J Am Diet Assoc. 2010;110(4):633–8.CrossRefPubMedGoogle Scholar
  149. 149.
    Samaha FF, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams T, Williams M, Gracely EJ, Stern L. A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med. 2003;348:2074–81.CrossRefPubMedGoogle Scholar
  150. 150.
    Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed S, Szapary PO, Rader DJ, Edman JS, Klein S. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med. 2003;348:2082–90.CrossRefPubMedGoogle Scholar
  151. 151.
    Stern L, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams M, Gracely EJ, Samaha FF. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults—one year follow-up of a randomized trial. Ann Intern Med. 2004;140:778–85.CrossRefPubMedGoogle Scholar
  152. 152.
    Yancy WS Jr, Olsen MK, Guyton JR, Bakst RP, Westman EC. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia. Ann Intern Med. 2004;140:769–77.CrossRefPubMedGoogle Scholar
  153. 153.
    Farnsworth E, Luscombe ND, Noakes M, Wittert G, Argyiou E, Clifton PM. Effect of a high-protein, energy-restricted diet on body composition, glycemic control, and lipid concentrations in overweight and obese hyperinsulinemic men and women. Am J Clin Nutr. 2003;78:31–9.CrossRefPubMedGoogle Scholar
  154. 154.
    Brehm BJ, Seely RJ, Daniels SR, D’Alessio DA. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab. 2003;88:1617–23.CrossRefPubMedGoogle Scholar
  155. 155.
    Engberink MF, Geleijnse JM, Bakker SJL, Larsen TM, Handjieva-Darlesnka T, Kafatos A, Martinez JA, Pfeiffer AFH. Effect of a high-protein diet on maintenance of blood pressure levels achieved after initial weight loss: the DiOGenes randomized study. J Hum Hypertens. 2015;29:58–63.CrossRefPubMedGoogle Scholar
  156. 156.
    Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER 3rd, Conlin PR, Erlinger TP, Rosner BA, Laranio NM, Charleston J, McCarron P, Bihop LM, OmniHeart Collaborative Research Group. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids. JAMA. 2005;294(19):2455–64.CrossRefPubMedGoogle Scholar
  157. 157.
    Oyabu C, Hashimoto Y, Fukuda T, Tanaka M, Asano M, Yamazaki M, Fukui M. Impact of low-carbohydrate diet on renal function: a meta-analysis of over 1000 individuals from nine randomized controlled trials. Br J Nutr. 2016;116:632–8.CrossRefPubMedGoogle Scholar
  158. 158.
    Siebenhofer A, Jeitler K, Horvath K, Berghold A, Posch N, Meschik J, Semlitsch T. Long-term effects of weight-reducing drugs in people with hypertension. Cochrane Database Syst Rev. 2016;3:CD007654.PubMedGoogle Scholar
  159. 159.
    Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.CrossRefPubMedGoogle Scholar
  160. 160.
    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccessi L, Nanni G, Pomp A, Castagneto M, Ghirlanda G, Rubino F. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.CrossRefPubMedGoogle Scholar
  161. 161.
    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, Aminian A, Pothier CE, Kim ES, Nissen SE, Kashyap SR, Investigators STAMPEDE. Bariatric surgery versus intensive medical therapy for diabetes—3 year outcomes. N Engl J Med. 2014;370(21):2002–13.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, Navaneethan SD, Singh RP, Pothier CE, Nissen SE, Kashyap SR, STAMPEDE Investigators. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Sjöström L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, Dahlgren S, Larsson B, Narbro K, Sjöström CD, Sullivan M, Wedel H, Swedish Obese Subjects Study Scientific Group. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.CrossRefGoogle Scholar
  164. 164.
    Hallersund P, Sjöström L, Olbers T, Lönroth H, Jacobson P, Wallenius V, Näslund I, Carlsson LM, Fändriks L. Gastric bypass surgery is followed by lowered blood pressure and increased diuresis - long term results from the Swedish Obese Subjects (SOS) study. PLoS One. 2012;7:e49696.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Sarkhosh K, Birch DW, Shi X, Gill RS, Karmali S. The impact of sleeve gastrectomy on hypertension: a systematic review. Obes Surg. 2012;22:832–7.CrossRefPubMedGoogle Scholar
  166. 166.
    Ricci C, Gaeta M, Rausa E, Asti E, Bandera F, Bonavina L. Long-term effects of bariatric surgery on type II diabetes, hypertension and hyperlipidemia: a meta-analysis and meta-regression study with 5-year follow-up. Obes Surg. 2015;25:397–405.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Wilhelm SM, Young J, Kale-Pradhan PB. Effect of bariatric surgery onhypertension: a meta-analysis. Ann Pharmacother. 2014;48:674–82.CrossRefPubMedGoogle Scholar
  168. 168.
    Vest AR, Heneghan HM, Agarwal S, Schauer PR, Young JB. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart. 2012;98:1763–77.CrossRefPubMedGoogle Scholar
  169. 169.
    Heneghan HM, Meron-Eldar S, Brethauer SA, Schauer PR, Young JB. Effect of bariatric surgery on cardiovascular risk profile. Am J Cardiol. 2011;108:1499–507.CrossRefPubMedGoogle Scholar
  170. 170.
    Courcoulas AP, Christian NJ, Belle SH, Berk PD, Flum DR, Garcia L, Horlick M, Kalarchian MA, King WC, Mitchell JE, Patterson EJ, Pendler JR, Pomp A, Pories WJ, Thirlby RC, Yanovski SZ, Wolfe BM, Longitudinal Assessment of Bariatric Surgery (LABS) Consortium. Weight change and health outcomes at 3 years after bariatric surgery among individuals with severe obesity. JAMA. 2013;310:2416–25.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Mechanick JI, Youdim A, Jones DB, Garvey WT, Hurley DL, McMahon MM, Heinberg LJ, Kushner R, Adams TD, Shikora S, Dixon JB, Brethauer S. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic and Bariatric Surgery. Obesity. 2013;21(Supplement 1):S1–27.CrossRefPubMedGoogle Scholar
  172. 172.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ, National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, National High Blood Pressure Education Program Coordinating Committee. The seventh report of the joint national committee on prevention, detection, evaluation and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.CrossRefGoogle Scholar
  173. 173.
    Amery A, Berthaux P, Bulpitt C, Deruyttere M, de Schaepdryver A, Dollery C, Fagard R, Forette F, Hellemans J, Lund-Johansen P, Mutsers A, Tuomilehto J. Glucose intolerance during diuretic therapy: results of trial by the European working party on hypertension in the elderly. Lancet. 1978;1(8066):681–3.CrossRefPubMedGoogle Scholar
  174. 174.
    Plavinik FL, Rodrigues C, Zanella MT, Ribeiro AB. Hypokalemia, glucose intolerance, and hyperinsulinemia during diuretic therapy. Hypertension. 1992;19(2 suppl):26–9.Google Scholar
  175. 175.
    Harper R, Ennis CN, Heaney AP, Sheridan B, Gormley M, Atkinson AB, Johnston GD, Bell PM. A comparison of the effects of low and conventional dose thiazide diuretic on insulin action in hypertensive patients with NIDDM. Diabetologia. 1995;38(7):853–9.CrossRefPubMedGoogle Scholar
  176. 176.
    Punzi HA, Punzi CF. Antihypertensive and lipid-lowering heart attack trial study; trinity hypertension research institute. Metabolic issues in the antihypertensive and lipid-lowering heart attack trial study. Curr Hypertens Rep. 2004;6(2):106–10.CrossRefPubMedGoogle Scholar
  177. 177.
    Harper R, Ennis CN, Sheridan B, Atkinson AB, Johnston GD, Bell PM. Effects of low dose versus conventional dose thiazide diuretic on insulin action in essential hypertension. Br Med J. 1994;309(6949):226–30.CrossRefGoogle Scholar
  178. 178.
    ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group, The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 288(23):2002, 2981.Google Scholar
  179. 179.
    Reisin E, Weir MR, Falkner B, Hutchinson HG, Anzalone DA, Tuck ML. Lisinopril versus hydrochlorothiazide in obese hypertensive patients: a multicenter placebo-controlled trial. For the Treatment in Obese Patients with Hypertension (TROPHY) study group. Hypertension. 1997;30(1):140–5.CrossRefPubMedGoogle Scholar
  180. 180.
    Barzilay JI, Davis BR, Cutler JA, Pressel SL, Whelton PK, Basile J, Margolis KL, Ong ST, Sadler LS, Summerson J, ALLHAT Collaborative Research Group. Fasting glucose levels and incident diabetes mellitus in older nondiabetic adults randomized to receive 3 different classes of antihypertensive treatment: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2006;166(2):2191–201.CrossRefPubMedGoogle Scholar
  181. 181.
    Black HR, Davis B, Barzilay J, Nwachuku C, Baimbridge C, Marginean H, Wright JT Jr, Basile J, Wong ND, Whelton P, Dart RA, Thadani U, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Metabolic and clinical outcomes in nondiabetic individuals with the metabolic syndrome assigned to chlorthalidone, amlodipine, or Lisinopril as initial treatment for hypertension: a report from the Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial (ALLHAT). Diabetes Care. 2008;31(2):353–60.CrossRefPubMedGoogle Scholar
  182. 182.
    Barzilay JI, Davis BR, Pressel SL, Cutler JA, Einhorn PT, Black HR, Cushman WC, Ford CE, Margolis KL, Moloo J, Oparil S, Piller LB, Simmons DL, Sweeney ME, Whelton PK, Wong ND, Wright JT Jr, ALLHAT Collaborative Research Group. Long-term effects of incident diabetes mellitus on cardiovascular outcomes in people treated for hypertension: the ALLHAT diabetes extension study. Circ Cardiovasc Qual Outcomes. 2012;5(2):153–62.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Rapoport MI, Hurd HF. Thiazide-induced glucose intolerance treated with potassium. Arch Intern Med. 1964;113:405–8.CrossRefPubMedGoogle Scholar
  184. 184.
    Helderman JH, Elahi D, Andersen DK, Raizes GS, Tobin JD, Shocken D, Andres R. Prevention of the glucose intolerance of thiazide diuretics by maintenance of body potassium. Diabetes. 1983;32(2):106–11.CrossRefPubMedGoogle Scholar
  185. 185.
    Reisin E, Graves JW, Yamal JM, Barzilay JI, Pressel SL, Einhorn PT, Dart RA, Retta TM, Saklayen MG, Davis BR, ALLHAT Collaborative Research Group. Blood pressure control and cardiovascular outcomes in normal-weight, overweight, and obese hypertensive patients treated with three different antihypertensives in ALLHAT. J Hypertens. 2014;32(7):1503–13.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Kintscher U, Bramlage P, Paar WD, Thoenes M, Unger T. Irbesartan for the treatment of hypertension in patients with the metabolic syndrome: a sub analysis of the treat to target post authorization survey. Prospective, observational two armed study in 14,200 patients. Cardiovasc Diabetol. 2007;6:12.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Prevenec M, Qi N, Wang J, Avery MA, Kurtz TW. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPAR gamma modulating activities. Hypertension. 2004;43(5):993–1002.CrossRefPubMedGoogle Scholar
  188. 188.
    Schupp M, Janke J, Clasen R, Unger T, Kintsher U. Angiotensin type I receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation. 2004;109(17):2054–7.CrossRefPubMedGoogle Scholar
  189. 189.
    Zappe DH, Sowers JR, Hsueh WA, Haffner SM, Deedwania PC, Fonseca VA, Keeling L, Sica DA. Metabolic and antihypertensive effects of combined angiotensin receptor blocker and diuretic therapy in Prediabetic hypertensive patients with the cardiometabolic syndrome. J Clin Hypertens. 2008;10(12):894–903.CrossRefGoogle Scholar
  190. 190.
    Niskanen L, Hedner T, Hanson L, Lanke J, Niklason A, CAPPP Study Group. Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/β-blocker-based Treatment Regimen: a subanalysis of the captopril prevention project. Diabetes Care. 2001;24:2091–6.CrossRefPubMedGoogle Scholar
  191. 191.
    Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis risk in communities study. N Engl J Med. 2000;342:905–12.CrossRefPubMedGoogle Scholar
  192. 192.
    Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H, LIFE Study Group. Cardiovascular morbidity and mortality in the Losartan Intervention for Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet. 2002;359:995–1003.CrossRefPubMedGoogle Scholar
  193. 193.
    Pepine CJ, Handberg EM, Cooper-DeHoff RM, Marks RG, Kowey P, Messerli FH, Mancia G, Cangiano JL, Garcia-Barreto D, Keltaj M, Erdine S, Bristol HA, Kolb HR, Bakris GL, Cohen JD, Parmley WW, INVEST Investigators. A calcium antagonist versus a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA. 2003;290:2805–16.CrossRefPubMedGoogle Scholar
  194. 194.
    Jacob S, Balletshofer B, Henriksen EJ, Volk A, Mehnert B, Loblein K, Haring HU, Rett K. Beta-blocking agents in patients with insulin resistance: effects of vasodilating beta-blockers. Blood Press. 1999;8(5-6):261–8.CrossRefPubMedGoogle Scholar
  195. 195.
    Jacob S, Henriksen EJ. Metabolic properties of vasodilating beta blockers: management considerations for hypertensive diabetic patients and patients with the metabolic syndrome. J Clin Hypertens. 2004;6(12):690–6.CrossRefGoogle Scholar
  196. 196.
    Fonseca VA. Effects of beta-blockers on glucose and lipid metabolism. Curr Med Res Opin. 2010;26(3):615–29.CrossRefPubMedGoogle Scholar
  197. 197.
    Taylor AA, Bakris GL. The role of vasodilating beta-blockers in patients with hypertension and the cardiometabolic syndrome. Am J Med. 2010;123(7 Supplement 1):S21–6.CrossRefPubMedGoogle Scholar
  198. 198.
    Deedwania P. Hypertension, dyslipidemia, and insulin resistance in patients with diabetes mellitus or the cardiometabolic syndrome: benefits of vasodilating beta-blockers. J Clin Hypertens. 2011;13(1):52–9.CrossRefGoogle Scholar
  199. 199.
    Fares H, Lavie CJ, Ventura HO. Vasodilating versus first-generation beta-blockers for cardiovascular protection. Postgrad Med. 2012;124(2):7–15.CrossRefPubMedGoogle Scholar
  200. 200.
    Fergus IV, Connell KL, Ferdinand KC. A comparison of vasodilating and non-vasodilating beta-blockers and their effects on cardiometabolic risk. Curr Cardiol Rep. 2015;17:38.CrossRefPubMedGoogle Scholar
  201. 201.
    Reisin E, Owen J. Treatment: special conditions. Metabolic syndrome: obesity and the hypertension connection. J Am Soc Hypertens. 2015;9(2):156–9.CrossRefPubMedGoogle Scholar
  202. 202.
    Jamerson K, Weber MA, Bakris GL, Dahlof B, Pitt B, Shi V, Hester A, Gupte J, Gatlin M, Velazquez EJ, ACCOMPLISH Trial Investigators. N Engl J Med. 2008;359(23):2417–28.CrossRefPubMedGoogle Scholar
  203. 203.
    Ernst ME, Carter BL, Basile JN. All thiazide-like diuretics are not chlorthalidone: putting the ACCOMPLISH study into perspective. J Clin Hypertens. 2009;11(1):5–10.CrossRefGoogle Scholar
  204. 204.
    Weber MA, Jamerson K, Bakris GL, Weir MR, Zappe D, Zhang Y, Dahlof B, Velazquez EJ, Pitt B. Effects of body size and hypertension treatments on cardiovascular event rates: subanalysis of the ACCOMPLISH randomized controlled trial. Lancet. 2013;381:537–45.CrossRefPubMedGoogle Scholar
  205. 205.
    National Clinical Guideline Centre. Hypertension: the clinical management of primary hypertension in adults: update of clinical guidelines 18 to 34. Royal College of Physicians (UK) 2011.Google Scholar
  206. 206.
    The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC). 2013 ESH/ESC guidelines for the management of arterial hypertension. J Hypertens. 2013;31:1281–357.CrossRefGoogle Scholar
  207. 207.
    Dasqupta K, Quinn RR, Zarnke KB, Rabi DM, Ravani P, Daskalopoulou SS, Rabkin SW, Trudeau L, Feldman RD, Cloutier L, Prebtani A, Herman RJ, Bacon SL, Gilbert RE, Ruzicka M, McKay DW, Campbell TS, Grover S, Honos G, Schiffrin EL, Bolli P, Wilson TW, Lindsay P, Hill MD, Coutts SB, Gubitz G, Gelfer M, Vallee M, Prasad GV, Lebel M, McLean D, Arnold JM, Moe GW, Howlett JG, Boulanger JM, Larochelle P, Leiter LA, Jones C, Ogilvie RI, Woo V, Kaczorowski J, Burns KD, Petrella RJ, Hiremath S, Milot A, Stone JA, Drouin D, Lavoie KL, Lamarre-Cliché M, Tremblay G, Hamet P, Fordor G, Carruthers SG, Pylypchuk GB, Burgess E, Lewanczuk R, Dresser GK, Penner SB, Hegele RA, McFarlane PA, Khara M, Pipe A, Oh P, Selby P, Sharma M, Reid DJ, Tobe SW, Padwal RS, Poirer L, Canadian Hypertension Education Program. The 2014 Canadian hypertension education program recommendations for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol. 2014;30(5):485–501.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jonathan Owen
    • 1
  • Stephen Morse
    • 2
  • Angela McLean
    • 3
  • Efrain Reisin
    • 2
  1. 1.Division of Nephrology, Department of Internal MedicineUniversity of New Mexico Health Sciences CenterAlbuquerqueUSA
  2. 2.Section of Nephrology and Hypertension, Department of MedicineLouisiana State University Health Sciences CenterNew OrleansUSA
  3. 3.Section of Internal Medicine, Department of MedicineLouisiana State University Health Sciences CenterNew OrleansUSA

Personalised recommendations