Advertisement

Microvascular Structural Alterations and Tissue Perfusion in Hypertension/Diabetes

  • Damiano Rizzoni
  • Carolina De Ciuceis
  • Enzo Porteri
  • Enrico Agabiti-Rosei
  • Claudia Agabiti-Rosei
Chapter
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)

Abstract

The development of structural changes in the systemic vasculature is the end result of established hypertension. Indeed, in essential hypertension, small arteries smooth muscle cell are restructured around a smaller lumen and no net growth of the vascular wall is present, while in some secondary forms of hypertension, as well as in non-insulin-dependent diabetes mellitus, a hypertrophic remodelling of subcutaneous small arteries may be detected. Indices of small resistance artery structure, such as the tunica media to internal lumen ratio, may have a strong prognostic significance in hypertensive and diabetic patients, over and above all other known cardiovascular risk factors.

In addition, in both pathological conditions, capillary rarefaction may be observed. So, the presence of morphological alteration in the microvasculature may be associated to an impaired tissue perfusion and/or to the development of target organ damage.

Therefore, regression of vascular alterations is an appealing goal of antihypertensive treatment. Different antihypertensive drugs seem to have different effect on vascular structure. In hypertensive and in diabetic patients a significant regression of structural alterations of small resistance arteries and an increase in capillary density was observed with drugs blocking the renin-angiotensin system as well as with calcium entry blockers.

In conclusion, alterations in the microcirculation represent a common pathological finding, and microangiopathy is one of the most important mechanisms involved in the development of organ damage as well as of clinical events in patients with hypertension and diabetes mellitus. Renin-angiotensin system blockade seems to be particularly effective in inducing a prevention/regression of microvascular structural alterations.

Keywords

Microcirculation Microvessels Small arteries Capillaries Capillary density Hypertension Diabetes mellitus Haemodynamics Perfusion Remodelling 

References

  1. 1.
    Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev. 1990;70:921–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Christensen KL, Mulvany MJ. Location of resistance arteries. J Vasc Res. 2001;38:1–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Schiffrin EL. Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens. 2004;17:1192–200.CrossRefPubMedGoogle Scholar
  4. 4.
    Mulvany MJ. Structural abnormalities of the resistance vasculature in hypertension. J Vasc Res. 2003;40:558–60.CrossRefPubMedGoogle Scholar
  5. 5.
    Bund SJ, Lee RMKW. Arterial structural changes in hypertension: a consideration of methodology, terminology and functional consequences. J Vasc Res. 2003;40:547–57.CrossRefPubMedGoogle Scholar
  6. 6.
    Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HAJ. Microcirculation in hypertension. A new target for treatment? Circulation. 2001;104:735–40.CrossRefPubMedGoogle Scholar
  7. 7.
    Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Rarefaction of skin capillaries in borderline essential hypertension suggests an early structural abnormality. Hypertension. 1999;34:655–8.CrossRefGoogle Scholar
  8. 8.
    Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Structural skin capillary rarefaction in essential hypertension. Hypertension. 1999;33:998–1001.CrossRefGoogle Scholar
  9. 9.
    Blonde L. State of diabetes care in the United States. Am J Manag Care. 2007;13(Suppl 2):S36–40.PubMedGoogle Scholar
  10. 10.
    Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens. 2003;21:3–12.CrossRefPubMedGoogle Scholar
  11. 11.
    McNally PG, Watt PAC, Rimmer T, Burden AC, Hearnshaw JR, Thurston H. Impaired contraction and endothelium-dependent relaxation in isolated resistance vessels from patients with insulin-dependent diabetes mellitus. Clin Sci. 1994;87:31–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, Cimino A, Girelli A, Rodella L, Bianchi R, Sleiman I, Agabiti Rosei E. Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non insulin dependent diabetes mellitus. Circulation. 2001;103:1238–44.CrossRefPubMedGoogle Scholar
  13. 13.
    Schofield I, Malik R, Izzard A, Austin C, Heagerty AM. Vascular structural and functional changes in type 2 diabetes mellitus. Evidence for the role of abnormal myogenic responsiveness and dyslipidemia. Circulation. 2002;106:3037–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Clark MG, Barrett EJ, Wallis MG, Vincent MA, Rattigan S. The microvasculature in insulin resistance and type 2 diabetes. Semin Vasc Med. 2002;2:21–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Jumar A, Harazny JM, Ott C, Friedrich S, Kistner I, Striepe K, Schmieder RE. Retinal capillary rarefaction in patients with type 2 diabetes mellitus. PLoS One. 2016;11(12):e0162608.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Folkow B. Physiological aspects of primary hypertension. Physiol Rev. 1982;62:347–504.CrossRefGoogle Scholar
  17. 17.
    Rizzoni D, Palombo C, Porteri E, Muiesan ML, Kozàkovà M, La Canna G, Nardi M, Guelfi D, Salvetti M, Morizzo C, Vittone F, Agabiti Rosei E. Relationships between coronary vasodilator capacity and small artery remodeling in hypertensive patients. J Hypertens. 2003;21:625–32.CrossRefPubMedGoogle Scholar
  18. 18.
    De Ciuceis C, Cornali C, Porteri E, Mardighian D, Pinardi C, Fontanella MM, Rodella LF, Rezzani R, Rizzoni D, Boari GE, Agabiti Rosei E, Gasparotti R. Cerebral small-resistance artery structure and cerebral blood flow in normotensive subjects and hypertensive patients. Neuroradiology. 2014;56:1103–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Agabiti Rosei E, Rizzoni D. In:Coca A, editor. Pathophysiology of brain damage in hypertension: small vessels disease. In: Hypertension and brain damage. Cham: Springer International Publishing AG Switzerland; 2016. p. 47–60.Google Scholar
  20. 20.
    Vaughan CJ, Delanty N. Hypertensive emergencies. Lancet. 2000;356(9227):411–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Paiardi S, Rodella LF, De Ciuceis C, Porteri E, Boari GE, Rezzani R, Rizzardi N, Platto C, Tiberio GA, Giulini SM, Rizzoni D, Agabiti-Rosei E. Immunohistochemical evaluation of microvascular rarefaction in hypertensive humans and in spontaneously hypertensive rats. Clin Hemorheol Microcirc. 2009;42(4):259–68.PubMedGoogle Scholar
  22. 22.
    Shore AC, Price KJ, Sandeman DD, Greeen EM, Tripp JH, Tooke JE. Impaired microvascular hyperhaemic response in children with diabetes mellitus. Diabet Med. 1991;8:619–23.CrossRefPubMedGoogle Scholar
  23. 23.
    Strain WD, Chaturvedi N, Nihoyannopoulos P, Bulpitt CJ, Rajkumar C, Shore AC. Differences in the association between type 2 diabetes and impaired microvascular function among Europeans and African Caribbeans. Diabetologia. 2005;48:2269–77.CrossRefPubMedGoogle Scholar
  24. 24.
    Rizzoni D, Porteri E, Boari GEM, De Ciuceis C, Sleiman I, Muiesan ML, Castellano M, Miclini M, Agabiti-Rosei E. Prognostic significance of small artery structure in hypertension. Circulation. 2003;108:2230–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Izzard AS, Rizzoni D, Agabiti-Rosei E, Heagerty AM. Small artery structure and hypertension: adaptive changes and target organ damage. J Hypertens. 2005;23:247–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Parving HH, Viberti GC, Keen H, Christensen JS, Lassen NA. Hemodynamic factors in the genesis of diabetic microangiopathy. Metabolism. 1983;32:943–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Fegan PG, Tooke JE, Gooding KM, Tullet JM, MacLeod KM, Shore AC. Capillary pressure in subjects with type 2 diabetes and hypertension and the effect of antihypertensive therapy. Hypertension. 2003;41:1111–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Sandeman DD, Shore AC, Tooke JE. Relation of skin capillary pressure in patients with insulin-dependent diabetes mellitus to complications and metabolic control. N Engl J Med. 1992;327:760–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Agabiti Rosei E, Rizzoni D. The effects of hypertension on the structure of human resistance arteries. In: Lip GYH, Hall JE, editors. Comprehensive hypertension, vol. 207, chapter 47. Amsterdam: Mosby Elsevier; 2007. p. 579–90.Google Scholar
  30. 30.
    Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME, Struijker- Boudier HA. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;118:968–76.CrossRefGoogle Scholar
  31. 31.
    Sonoyama K, Greenstein A, Price A, Khavandi K, Heagerty T. Vascular remodeling: implications for small artery function and target organ damage. Ther Adv Cardiovasc Dis. 2007;1:129–37.CrossRefPubMedGoogle Scholar
  32. 32.
    Delaney PJ, Burnham MP, Heagerty AM, Izzard AS. Impaired myogenic properties of cerebral arteries from the Brown Norway rat. J Hypertens. 2012;30:926–31.CrossRefPubMedGoogle Scholar
  33. 33.
    Izzard AS, Heagerty AM. Myogenic properties of brain and cardiac vessels and their relation to disease. Curr Vasc Pharmacol. 2014;12:829–35.CrossRefPubMedGoogle Scholar
  34. 34.
    Hashimoto J, Aikawa T, Imai Y. Large artery stiffening as a link between cerebral lacunar infarction and renal albuminuria. Am J Hypertens. 2008;21(12):1304–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Brisset M, Boutouyrie P, Pico F, Zhu Y, Zureik M, Schilling S, Dufouil C, Mazoyer B, Laurent S, Tzourio C, Debette S. Large-vessel correlates of cerebral small-vessel disease. Neurology. 2013;80:662–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rizzoni D, Agabiti-Rosei C, Agabiti-Rosei E. Hemodynamic consequences of changes in microvascular structure. Am J Hypertens. 2017;30:939.  https://doi.org/10.1093/ajh/hpx032.CrossRefPubMedGoogle Scholar
  37. 37.
    Ahima RS. Adipose tissue as an endocrine organ. Obesity. 2006;14(Suppl 5):242S–9S.CrossRefPubMedGoogle Scholar
  38. 38.
    Guerre-Millo M. Adipose tissue hormones. J Endocrinol Investig. 2002;25:855–61.CrossRefGoogle Scholar
  39. 39.
    Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, Laing I, Yates AP, Pemberton PW, Malik RA, Heagerty AM. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119:1661–70.CrossRefPubMedGoogle Scholar
  40. 40.
    Withers SB, Agabiti Rosei C, Livingstone DM, Little MC, Aslam R, Malik RA, Heagerty AM. Studies in CD11b-DTR macrophage deficient mice prove that macrophage activation is responsible for the loss of anticontractile function in inflamed perivascular adipose tissue. Arterioscler Thromb Vasc Biol. 2011;31:908–13.CrossRefPubMedGoogle Scholar
  41. 41.
    Buus NH, Mathiassen ON, Fenger-Grøn M, Præstholm MN, Sihm I, Thybo NK, Schroeder AP, Thygesen K, Aalkjær C, Pedersen OL, Mulvany MJ, Christensen KL. Small artery structure during antihypertensive therapy is an independent predictor of cardiovascular events in essential hypertension. J Hypertens. 2013;31:791–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Agabiti-Rosei E, Rizzoni D. Microvascular structure as a prognostically relevant endpoint. J Hypertens. 2017;35:914–21.CrossRefPubMedGoogle Scholar
  43. 43.
    Agabiti-Rosei E, Heagerty AM, Rizzoni D. Effects of antihypertensive treatment on small artery remodelling. J Hypertens. 2009;27:1107–14.CrossRefPubMedGoogle Scholar
  44. 44.
    Buus NH, Bøttcher M, Jørgensen CG, Christensen KL, Thygesen K, Nielsen TT, Mulvany MJ. Myocardial perfusion during long-term angiotensin-converting enzyme inhibition or beta-blockade in patients with essential hypertension. Hypertension. 2004;44:465–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Rizzoni D. Impact of different antihypertensive treatments on the microcirculation. Microcirc Cardiovasc Dis. 2012;7:3–7.Google Scholar
  46. 46.
    Debbabi H, Bonnin P, Levy BI. Effects of blood pressure control with perindopril/indapamide on the microcirculation in hypertensive patients. Am J Hypertens. 2010;23:1136–43.CrossRefGoogle Scholar
  47. 47.
    De Ciuceis C, Salvetti M, Rossini C, Muiesan ML, Paini A, Duse S, La Boria E, Semeraro F, Cancarini A, Agabiti Rosei C, Sarkar A, Ruggeri G, Caimi L, Ricotta D, Rizzoni D, Agabiti Rosei E. Effect of antihypertensive treatment on microvascular structure, central blood pressure and oxidative stress in patients with mild essential hypertension. J Hypertens. 2014;32:565–74.CrossRefPubMedGoogle Scholar
  48. 48.
    Jumar A, Harazny JM, Ott C, Kistner I, Friedrich S, Schmieder RE. Improvement in retinal capillary rarefaction after valsartan treatment in hypertensive patients. J Clin Hypertens (Greenwich). 2016;18:1112–8.CrossRefGoogle Scholar
  49. 49.
    Rizzoni D, Paini A, Salvetti M, Rossini C, De Ciuceis C, Agabiti-Rosei C, Muiesan ML. Inhibitors of angiogenesis and blood pressure. Curr Cardiovasc Risk Rep. 2013;7(3):244–7.CrossRefGoogle Scholar
  50. 50.
    Agabiti Rosei C, Withers SB, Belcaid L, De Ciuceis C, Rizzoni D, Heagerty AM. Blockade of the renin-angiotensin system in small arteries and anticontractile function of perivascular adipose tissue. J Hypertens. 2015;33:1039–45.CrossRefGoogle Scholar
  51. 51.
    Agabiti-Rosei C, De Ciuceis C, Rossini C, Porteri E, Rodella LF, Withers SB, Heagerty AM, Favero G, Agabiti-Rosei E, Rizzoni D, Rezzani R. Anticontractile activity of perivascular fat in obese mice and the effect of long-term treatment with melatonin. J Hypertens. 2014;32:1264–74.CrossRefPubMedGoogle Scholar
  52. 52.
    Aghamohammadzadeh R, Greenstein AS, Yadav R, Jeziorska M, Hama S, Soltani F, Pemberton PW, Ammori B, Malik RA, Soran H, Heagerty AM. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol. 2013;62:128–1235.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Adler AI, Stratton IM, Neil HA, Yudkin JS, Matthews DR, Cull CA, Wright AD, Turner RC, Holman RR. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ. 2000;321:412–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998;317:703–13.Google Scholar
  55. 55.
    Endemann DH, Pu Q, De Ciuceis C, Savoia C, Virdis A, Neves MF, Touyz RM, Schiffrin EL. Persistent remodeling of resistance arteries in type 2 diabetic patients on antihypertensive treatment. Hypertension. 2004;43:399–404.CrossRefPubMedGoogle Scholar
  56. 56.
    Rizzoni D, Porteri E, De Ciuceis C, Sleiman I, Rodella L, Rezzani R, Paiardi S, Bianchi R, Ruggeri G, Boari GE, Muiesan ML, Salvetti M, Zani F, Miclini M, Rosei A. Effect of treatment with candesartan or enalapril on subcutaneous small artery structure in hypertensive patients with non insulin-dependent diabetes mellitus. Hypertension. 2005;45:659–65.CrossRefPubMedGoogle Scholar
  57. 57.
    Savoia C, Touyz RM, Endemann DH, Pu Q, Ko EA, De Ciuceis C, Schiffrin EL. Angiotensin receptor blocker added to previous antihypertensive agents on arteries of diabetic hypertensive patients. Hypertension. 2006;48:271–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Ott C, Jumar A, Striepe K, Friedrich S, Karg MV, Bramlage P, Schmieder RE. A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation. Cardiovasc Diabetol. 2017;16(1):26.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Greenstein AS, Price A, Sonoyama K, Paisley A, Khavandi K, Withers S, Shaw L, Paniagua O, Malik RA, Heagerty AM. Eutrophic remodeling of small arteries in type 1 diabetes mellitus is enabled by metabolic control: a 10-year follow-up study. Hypertension. 2009;54(1):134–41.CrossRefPubMedGoogle Scholar
  60. 60.
    Feih F, Liaudet L, Waeber B, Levy BI. Hypertension: a disease of the microcirculation? Hypertension. 2006;48:1012–7.CrossRefGoogle Scholar
  61. 61.
    Agabiti Rosei E, Rizzoni D. Small artery remodelling in diabetes. J Cell Mol Med. 2010;14:1030–6.Google Scholar
  62. 62.
    Rizzoni D, Agabiti Rosei E. Small artery remodeling in diabetes mellitus. Nutr Metab Cardiovasc Dis. 2009;19:587–92.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Damiano Rizzoni
    • 1
    • 2
  • Carolina De Ciuceis
    • 1
  • Enzo Porteri
    • 1
  • Enrico Agabiti-Rosei
    • 1
  • Claudia Agabiti-Rosei
    • 1
  1. 1.Clinica Medica, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
  2. 2.Division of MedicineIstituto Clinico Città di BresciaBresciaItaly

Personalised recommendations