Advertisement

Diurnal and Pulsatile Hemodynamics in Individuals with Prehypertension

  • Thomas Weber
  • Siegfried Wassertheurer
  • Bernhard Hametner
  • Brigitte Kupka
  • Kai Mortensen
Chapter
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)

Abstract

The blood pressure category of prehypertension is established by office blood pressure measurement. We investigated the role of 24 h ambulatory blood pressure measurement in subdividing office-based blood pressure categories, establishing the diagnosis of true prehypertension, masked and white-coat hypertension. Furthermore, values of 24 h ambulatory pulsatile hemodynamics were assessed in the different categories. The main finding is that a substantial proportion of individuals with an office blood pressure-based diagnosis of prehypertension actually have masked hypertension. These individuals have the highest values of all measurements of 24 h pulsatile hemodynamics (central pressures, wave reflections, aortic pulse wave velocity), which may contribute to their known increased cardiovascular risk.

Keywords

Prehypertension Office blood pressure Ambulatory blood pressure Masked hypertension Pulsatile hemodynamics Central blood pressure Wave reflections Aortic pulse wave velocity 

References

  1. 1.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ, Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute and National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206–52.CrossRefGoogle Scholar
  2. 2.
    Vasan RS, Larson MG, Leip EP, Evans JC, O'Donnell CJ, Kannel WB, Levy D. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345:1291–7.CrossRefGoogle Scholar
  3. 3.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.CrossRefGoogle Scholar
  4. 4.
    Schwartz JE, Burg MM, Shimbo D, Broderick JE, Stone AA, Ishikawa J, Sloan R, Yurgel T, Grossman S, Pickering TG. Clinic blood pressure underestimates ambulatory blood pressure in an untreated employer-based US population: results from the masked hypertension study. Circulation. 2016;134:1794–807.CrossRefGoogle Scholar
  5. 5.
    Shimbo D, Newman JD, Schwartz JE. Masked hypertension and prehypertension: diagnostic overlap and interrelationships with left ventricular mass: the Masked Hypertension Study. Am J Hypertens. 2012;25:664–71.CrossRefGoogle Scholar
  6. 6.
    Franklin SS, Larson MG, Khan SA, Wong ND, Leip EP, Kannel WB, Levy D. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation. 2001;103(9):1245.CrossRefGoogle Scholar
  7. 7.
    Weber T, Wassertheurer S, O’Rourke MF, Haiden A, Zweiker R, Rammer M, Hametner B, Eber B. Pulsatile hemodynamics in patients with exertional dyspnea: potentially of value in the diagnostic evaluation of suspected heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;61:1874–83.CrossRefGoogle Scholar
  8. 8.
    Regnault V, Lagrange J, Pizard A, Safar ME, Fay R, Pitt B, Challande P, Rossignol P, Zannad F, Lacolley P. Opposite predictive value of pulse pressure and aortic pulse wave velocity on heart failure with reduced left ventricular ejection fraction: insights from an Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) substudy. Hypertension. 2014;63:105–11.CrossRefGoogle Scholar
  9. 9.
    Avolio AP, Van Bortel LM, Boutouyrie P, Cockcroft JR, McEniery CM, Protogerou AD, Roman MJ, Safar ME, Segers P, Smulyan H. Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension. 2009;54:375–83.CrossRefGoogle Scholar
  10. 10.
    McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB. Central blood pressure: current evidence and clinical importance. Eur Heart J. 2014;35:1719–25.CrossRefGoogle Scholar
  11. 11.
    Vlachopoulos C, Xaplanteris P, Aboyans V, Brodmann M, Cifkova R, Cosentino F, De Carlo M, Gallino A, Landmesser U, Laurent S, Lekakis J, Mikhailidis DP, Naka KK, Protogerou AD, Rizzoni D, Schmidt-Trucksass A, Van Bortel L, Weber T, Yamashina A, Zimlichman R, Boutouyrie P, Cockcroft J, O'Rourke M, Park JB, Schillaci G, Sillesen H, Townsend RR. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis. 2015;241:507–32.CrossRefGoogle Scholar
  12. 12.
    O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007;50:1–13.CrossRefGoogle Scholar
  13. 13.
    Pannier B, Guerin AP, Marchais SJ, Safar ME, London GM. Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. Hypertension. 2005;45:592–6.CrossRefGoogle Scholar
  14. 14.
    Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, Chen CH, Cruickshank JK, Hwang SJ, Lakatta EG, Laurent S, Maldonado J, Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, Shokawa T, Sutton-Tyrell K, Verbeke F, Wang KL, Webb DJ, Willum Hansen T, Zoungas S, McEniery CM, Cockcroft JR, Wilkinson IB. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.CrossRefGoogle Scholar
  15. 15.
    Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, Kropf J, Eber B. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension. 2011;58:825–32.CrossRefGoogle Scholar
  16. 16.
    Horvath IG, Nemeth A, Lenkey Z, Alessandri N, Tufano F, Kis P, Gaszner B, Cziraki A. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens. 2010;28:2068–75.CrossRefGoogle Scholar
  17. 17.
    Williams B, Lacy PS, Yan P, Hwee CN, Liang C, Ting CM. Development and validation of a novel method to derive central aortic systolic pressure from the radial pressure waveform using an n-point moving average method. J Am Coll Cardiol. 2011;57:951–61.CrossRefGoogle Scholar
  18. 18.
    Hametner B, Wassertheurer S, Kropf J, Mayer C, Holzinger A, Eber B, Weber T. Wave reflection quantification based on pressure waveforms alone—methods, comparison, and clinical covariates. Comput Methods Prog Biomed. 2013;109:250–9.CrossRefGoogle Scholar
  19. 19.
    Jones CR, Taylor K, Chowienczyk P, Poston L, Shennan AH. A validation of the Mobil O Graph (version 12) ambulatory blood pressure monitor. Blood Press Monit. 2000;5:233–8.CrossRefGoogle Scholar
  20. 20.
    Franssen PM, Imholz BP. Evaluation of the Mobil-O-Graph new generation ABPM device using the ESH criteria. Blood Press Monit. 2010;15:229–31.CrossRefGoogle Scholar
  21. 21.
    Wei W, Tolle M, Zidek W, van der Giet M. Validation of the mobil-O-Graph: 24 h-blood pressure measurement device. Blood Press Monit. 2010;15:225–8.CrossRefGoogle Scholar
  22. 22.
    Wassertheurer S, Kropf J, Weber T, van der Giet M, Baulmann J, Ammer M, Hametner B, Mayer CC, Eber B, Magometschnigg D. A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J Hum Hypertens. 2010;24:498–504.CrossRefGoogle Scholar
  23. 23.
    Hametner B, Parragh S, Mayer C, Weber T, Van Bortel L, De Buyzere M, Segers P, Rietzschel E, Wassertheurer S. Assessment of model based (input) impedance, pulse wave velocity, and wave reflection in the Asklepios cohort. PLoS One. 2015;10:e0141656.CrossRefGoogle Scholar
  24. 24.
    Weber T, Wassertheurer S, Rammer M, Haiden A, Hametner B, Eber B. Wave reflections, assessed with a novel method for pulse wave separation, are associated with end-organ damage and clinical outcomes. Hypertension. 2012;60:534–41.CrossRefGoogle Scholar
  25. 25.
    Weber T, Wassertheurer S, Hametner B, Parragh S, Eber B. Noninvasive methods to assess pulse wave velocity: comparison with the invasive gold standard and relationship with organ damage. J Hypertens. 2015;33:1023–31.CrossRefGoogle Scholar
  26. 26.
    Feistritzer HJ, Reinstadler SJ, Klug G, Kremser C, Seidner B, Esterhammer R, Schocke MF, Franz WM, Metzler B. Comparison of an oscillometric method with cardiac magnetic resonance for the analysis of aortic pulse wave velocity. PLoS One. 2015;10:e0116862.CrossRefGoogle Scholar
  27. 27.
    Baumann M, Wassertheurer S, Suttmann Y, Burkhardt K, Heemann U. Aortic pulse wave velocity predicts mortality in chronic kidney disease stages 2-4. J Hypertens. 2014;32:899–903.Google Scholar
  28. 28.
    Wassertheurer S, Baumann M. Assessment of systolic aortic pressure and its association to all cause mortality critically depends on waveform calibration. J Hypertens. 2015;33:1884.CrossRefGoogle Scholar
  29. 29.
    Protogerou AD, Argyris AA, Papaioannou TG, Kollias GE, Konstantonis GD, Nasothimiou E, Achimastos A, Blacher J, Safar ME, Sfikakis PP. Left-ventricular hypertrophy is associated better with 24-h aortic pressure than 24-h brachial pressure in hypertensive patients: the SAFAR study. J Hypertens. 2014;32:1805–14.CrossRefGoogle Scholar
  30. 30.
    Weber T, Wassertheurer S, Sala ER, Ablasser C, Jankowski P, Muisan ML, Giannatasio C, Mang C, Schmidt-Trucksass A, Wilkinson I, McEniery C. Os 13-09 relationship between 24 hour ambulatory central blood pressure and left ventricular mass—a prospective multicenter study. J Hypertens. 2016;34(Suppl 1). —ISH 2016 Abstract Book: e210–e211CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Kollias G, Argyris AA, Papaioannou TG, Tountas C, Konstantonis GD, Achimastos A, Blacher J, Safar ME, Sfikakis PP, Protogerou AD. Association of left ventricular diastolic dysfunction with 24-h aortic ambulatory blood pressure: the SAFAR study. J Hum Hypertens. 2015;29:442–8.CrossRefGoogle Scholar
  32. 32.
    Sarafidis PA, Loutradis C, Karpetas A, Tzanis G, Piperidou A, Koutroumpas G, Raptis V, Syrgkanis C, Liakopoulos V, Efstratiadis G, London G, Zoccali C. Ambulatory pulse wave velocity is a stronger predictor of cardiovascular events and all-cause mortality than office and ambulatory blood pressure in hemodialysis patients. Hypertension. 2017;70:148–57.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Thomas Weber
    • 1
  • Siegfried Wassertheurer
    • 2
  • Bernhard Hametner
    • 2
  • Brigitte Kupka
    • 2
  • Kai Mortensen
    • 3
  1. 1.Cardiology DepartmentKlinikum Wels-GrieskirchenWelsAustria
  2. 2.Department of Health and EnvironmentAustrian Institute of TechnologyViennaAustria
  3. 3.University of LübeckLübeckGermany

Personalised recommendations