Advertisement

Type IV Secretion in Agrobacterium tumefaciens and Development of Specific Inhibitors

  • Mahzad Sharifahmadian
  • Christian Baron
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 413)

Abstract

The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) comprises 12 membrane-bound proteins, and it assembles a surface-exposed T-pilus. It is considered to be the archetypical system that is generally used to orient the nomenclature of other T4SS. Whereas the sequence similarities between T4SSs from different organisms are often limited, the general mechanism of action appears to be conserved, and the evolutionary relationship to bacterial conjugation systems and to T4SSs from animal pathogens is well established. Agrobacterium is a natural genetic engineer that is extensively used for the generation of transgenic plants for research and for agro-biotechnological applications. It also served as an early model for the understanding of pathogen–host interactions and for the transfer of macromolecular virulence factors into host cells. The knowledge on the mechanism of its T4SS inspired the search for small molecules that inhibit the virulence of bacterial pathogens and of bacterial conjugation. Inhibitors of bacterial virulence and of conjugation have interesting potential as alternatives to antibiotics and as inhibitors of antimicrobial resistance gene transfer. Mechanistic work on the Agrobacterium T4SS will continue to inspire the search for inhibitor target sites and drug design.

Keywords

Agrobacterium tumefaciens Secretion system Type IV secretion Pilus Anti-virulence drugs Membrane proteins Conjugation Virulence Infectious diseases 

Notes

Acknowledgements

Work in the authors laboratory was supported by grants from the Canadian Institutes of Health Research (CIHR MOP-84239), from the Natural Sciences and Engineering Research Council (NSERC), the NSERC-CREATE program on the Cellular Dynamics of Macromolecular Complexes (CDMC), the Bristol-Myers Squibb research Chair in Molecular Biology at Université de Montréal, the Groupe d’études des proteines membranaires (GÉPROM), the Canada Foundation for Innovation (CFI), and the Fonds de recherche du Québec-Santé (FRQ-S).

References

  1. Aguilar J, Cameron TA, Zupan J, Zambryski P (2011) Membrane and core periplasmic Agrobacterium tumefaciens virulence Type IV secretion system components localize to multiple sites around the bacterial perimeter during lateral attachment to plant cells. MBio 2(6):e00218–00211.  https://doi.org/10.1128/mBio.00218-11CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aguilar J, Zupan J, Cameron TA, Zambryski PC (2010) Agrobacterium type IV secretion system and its substrates form helical arrays around the circumference of virulence-induced cells. Proc Natl Acad Sci USA 107(8):3758–3763.  https://doi.org/10.1073/pnas.0914940107CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73(4):775–808.  https://doi.org/10.1128/MMBR.00023-09CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aly KA, Baron C (2007) The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153:3766–3775CrossRefPubMedGoogle Scholar
  5. Aly KA, Krall L, Lottspeich F, Baron C (2007) The type IV secretion system component VirB5 binds to the trans-zeatin biosynthetic enzyme Tzs and enables its translocation to the cell surface of Agrobacterium tumefaciens. J Bacteriol 190:1595–1604CrossRefPubMedPubMedCentralGoogle Scholar
  6. Atmakuri K, Cascales E, Christie PJ (2004) Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54:1199–1211CrossRefPubMedGoogle Scholar
  7. Atmakuri K, Ding Z, Christie PJ (2003) VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol 49:1699–1713CrossRefPubMedPubMedCentralGoogle Scholar
  8. Backert S, Meyer TF (2006) Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9(2):207–217.  https://doi.org/10.1016/j.mib.2006.02.008CrossRefPubMedPubMedCentralGoogle Scholar
  9. Backert S, Fronzes R, Waksman G (2008) VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol 16:409–413CrossRefPubMedGoogle Scholar
  10. Bailey S, Ward D, Middleton R, Grossmann JG, Zambryski P (2006) Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interactions sites. Proc Natl Acad Sci USA 103:2582–2587CrossRefPubMedGoogle Scholar
  11. Barden S, Lange S, Tegtmeyer N, Conradi J, Sewald N, Backert S, Niemann HH (2013) A helical RGD motif promoting cell adhesion: crystal structures of the Helicobacter pylori type IV secretion system pilus protein CagL. Structure 21(11):1931–1941.  https://doi.org/10.1016/j.str.2013.08.018CrossRefPubMedPubMedCentralGoogle Scholar
  12. Baron C (2010) Antivirulence drugs to target bacterial secretion systems. Curr Opin Microbiol 13(1):100–105.  https://doi.org/10.1016/j.mib.2009.12.003CrossRefPubMedGoogle Scholar
  13. Baron C, Llosa M, Zhou S, Zambryski PC (1997a) C-terminal processing and cellular localization of VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens. J Bacteriol 179:1203–1210CrossRefPubMedPubMedCentralGoogle Scholar
  14. Baron C, Thorstenson YR, Zambryski PC (1997b) Biochemical analysis of the complex between the lipoprotein VirB7 and VirB9 in the membranes of Agrobacterium tumefaciens. J Bacteriol 179:1211–1218CrossRefPubMedPubMedCentralGoogle Scholar
  15. Baron C, Winum J-Y, Köhler S (2012) Novel targets for antibacterial agents in Brucella sp. In: O’Callaghan DaLG I (ed) Brucella: molecular microbiology and genetics. Horizon Scientific Press, Nîmes, France and Pamplona, SpainGoogle Scholar
  16. Batchelor RA, Pearson BM, Friis LM, Guerry P, Wells JM (2004) Nucleotide sequences and comparison of two large conjugative plasmids from different Campylobacter species. Microbiology 150(Pt 10):3507–3517.  https://doi.org/10.1099/mic.0.27112-0CrossRefPubMedGoogle Scholar
  17. Berger BR, Christie PJ (1994) Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176:3646–3660CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cascales E, Christie PJ (2004a) Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci USA 101:17228–17233CrossRefPubMedGoogle Scholar
  19. Cascales E, Christie PJ (2004b) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–1173CrossRefPubMedGoogle Scholar
  20. Casu B, Smart JP, Hancock MA, Smith M, Sygusch J, Baron C (2016) Structural analysis and inhibition of TraE from the pKM101 type IV secretion system. J Biol Chem 291:23817–23829CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chandran Darbari V, Waksman G (2015) Structural biology of bacterial type IV secretion systems. Annu Rev Biochem 84:603–629.  https://doi.org/10.1146/annurev-biochem-062911-102821CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J, Waksman G (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462(7276):1011–1015.  https://doi.org/10.1038/nature08588CrossRefPubMedPubMedCentralGoogle Scholar
  23. Christie PJ (2001) Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40:294–305CrossRefPubMedPubMedCentralGoogle Scholar
  24. Conradi J, Tegtmeyer N, Wozna M, Wissbrock M, Michalek C, Gagell C, Cover TL, Frank R, Sewald N, Backert S (2012) An RGD helper sequence in CagL of Helicobacter pylori assists in interactions with integrins and injection of CagA. Front Cell Infect Microbiol 2:70.  https://doi.org/10.3389/fcimb.2012.00070CrossRefPubMedPubMedCentralGoogle Scholar
  25. Das A, Xie Y-H (2000) The Agrobacterium T-DNA transport pore proteins VirB8, VirB9 and VirB10 interact with one another. J Bacteriol 182:758–763CrossRefPubMedPubMedCentralGoogle Scholar
  26. de Paz HD, Larrea D, Zunzunegui S, Dehio C, de la Cruz F, Llosa M (2010) Functional dissection of the conjugative coupling protein TrwB. J Bacteriol 192(11):2655–2669.  https://doi.org/10.1128/JB.01692-09CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ding Z, Zhao Z, Jakubowski S, Krishnamohan A, Margolin W, Christie PJ (2002) A novel cytology-based, two-hybrid screen for bacteria applied to protein-protein interaction studies of a type IV secretion system. J Bacteriol 184(20):5572–5582CrossRefPubMedPubMedCentralGoogle Scholar
  28. Eisenbrandt R, Kalkum M, Lai EM, Lurz R, Kado CI, Lanka E (1999) Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274:22548–22555CrossRefPubMedGoogle Scholar
  29. Eisenbrandt R, Kalkum M, Lurz R, Lanka E (2000) Maturation of IncP pilin precursors resembles the catalytic dyad-like mechanism of leader peptidases. J Bacteriol 182:6751–6761CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fernandez D, Dang TAT, Spudich GM, Zhou X-R, Berger BR, Christie PJ (1996a) The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol 178:3156–3167CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fernandez D, Spudich GM, Zhou X-R, Christie PJ (1996b) The Agrobacterium tumefaciens virB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol 178:3168–3176CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fronzes R, Christie PJ, Waksman G (2009a) The structural biology of type IV secretion systems. Nat Rev Microbiol 7(10):703–714CrossRefPubMedGoogle Scholar
  33. Fronzes R, Schafer E, Wang L, Saibil HR, Orlova EV, Waksman G (2009b) Structure of a type IV secretion system core complex. Science 323(5911):266–268.  https://doi.org/10.1126/science.1166101CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fullner K, Stephens KM, Nester EW (1994) An essential virulence protein of Agrobacterium tumefaciens, VirB4, requires an intact mononucleotide binding domain to function in transfer of T-DNA. Mol Gen Gen 245:704–715CrossRefGoogle Scholar
  35. Fullner KJ, Lara JL, Nester EW (1996) Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273:1107–1109CrossRefPubMedGoogle Scholar
  36. Gillespie JJ, Phan IQ, Scheib H, Subramanian S, Edwards TE, Lehman SS, Piitulainen H, Sayeedur Rahman M, Rennoll-Bankert KE, Staker BL, Taira S, Stacy R, Myler PJ, Azad AF, Pulliainen AT (2015) Structural Insight into how bacteria prevent interference between multiple divergent type IV secretion systems. MBio.  https://doi.org/10.1128/mBio.01867-15CrossRefPubMedPubMedCentralGoogle Scholar
  37. Goessweiner-Mohr N, Grumet L, Arends K, Pavkov-Keller T, Gruber CC, Gruber K, Birner-Gruenberger R, Kropec-Huebner A, Huebner J, Grohmann E, Keller W (2013) The 2.5 a structure of the Enterococcus conjugation protein TraM resembles VirB8 type IV secretion proteins. J Biol Chem 288(3):2018–2028.  https://doi.org/10.1074/jbc.M112.428847CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gomis-Ruth FX, Moncalian G, Perez-Luque R, Gonzalez A, Cabezon E, de la Cruz F, Coll M (2001) The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409:637–641CrossRefPubMedGoogle Scholar
  39. Grohmann E, Christie PJ, Waksman G, Backert S (2018) Type IV secretion in gram-negative and gram-positive bacteria. Mol Microbiol 107:455–471.  https://doi.org/10.1111/mmi.13896CrossRefPubMedGoogle Scholar
  40. Guglielmini J, Neron B, Abby SS, Garcillan-Barcia MP, de la Cruz F, Rocha EP (2014) Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res 42(9):5715–5727.  https://doi.org/10.1093/nar/gku194CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hapfelmeier S, Domke N, Zambryski PC, Baron C (2000) VirB6 is required for stabilization of VirB5, VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. J Bacteriol 182:4505–4511CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hilleringmann M, Pansegrau W, Doyle M, Kaufman S, MacKichan ML, Gianfaldoni C, Ruggiero P, Covacci A (2006) Inhibitors of Helicobacter pylori ATPase Cagalpha block CagA transport and cag virulence. Microbiology 152(Pt 10):2919–2930CrossRefPubMedGoogle Scholar
  43. Höppner C, Carle A, Sivanesan D, Hoeppner S, Baron C (2005) The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. Microbiology 151:3469–3482CrossRefPubMedGoogle Scholar
  44. Höppner C, Liu Z, Domke N, Binns AN, Baron C (2004) VirB1 orthologs from Brucella suis and pKM101 complement defects of the lytic transglycosylase required for efficient type IV secretion from Agrobacterium tumefaciens. J Bacteriol 186:1415–1422CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jakubowski SJ, Cascales E, Krishnamoorthy V, Christie PJ (2005) Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-Pilus biogenesis. J Bacteriol 187:3486–3495CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jakubowski SJ, Krishnamoorthy V, Cascales E, Christie PJ (2004) Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. J Mol Biol 341:961–977CrossRefPubMedPubMedCentralGoogle Scholar
  47. Judd PK, Kumar RB, Das A (2005a) Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. Proc Natl Acad Sci USA 102:11498–11503CrossRefPubMedGoogle Scholar
  48. Judd PK, Kumar RB, Das A (2005b) The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol Microbiol 55:115–124CrossRefPubMedGoogle Scholar
  49. Kalkum M, Eisenbrandt R, Lurz R, Lanka E (2002) Tying rings for sex. Trends Microbiol 10:382–387CrossRefPubMedGoogle Scholar
  50. Kerr JE, Christie PJ (2010) Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 192(19):4923–4934.  https://doi.org/10.1128/JB.00557-10CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kuroda T, Kubori T, Thanh Bui X, Hyakutake A, Uchida Y, Imada K, Nagai H (2015) Molecular and structural analysis of Legionella DotI gives insights into an inner membrane complex essential for type IV secretion. Sci Rep 5:10912.  https://doi.org/10.1038/srep10912CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, Konig W, Backert S (2007) Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449(7164):862–866.  https://doi.org/10.1038/nature06187CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lai E-M, Kado CI (1998) Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180:2711–2717PubMedPubMedCentralGoogle Scholar
  54. Lessl M, Lanka E (1994) Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell 77:321–324CrossRefPubMedGoogle Scholar
  55. Li X, Pan SQ (2017) Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. Sci Adv 3(3):e1601528.  https://doi.org/10.1126/sciadv.1601528CrossRefPubMedPubMedCentralGoogle Scholar
  56. Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S, Dujeancourt A, Lu F, Redzej A, Fronzes R, Orlova EV, Waksman G (2014) Structure of a type IV secretion system. Nature 508(7497):550–553.  https://doi.org/10.1038/nature13081CrossRefPubMedPubMedCentralGoogle Scholar
  57. Middleton R, Sjölander K, Krishnamurthy N, Foley J, Zambryski P (2005) Predicted hexameric structure of the Agrobacterium VirB4 C terminus suggests VirB4 acts as a docking site during type IV secretion. Proc Natl Acad Sci USA 102:1685–1690CrossRefPubMedGoogle Scholar
  58. Mossey P, Hudacek A, Das A (2010) Agrobacterium tumefaciens type IV secretion protein VirB3 is an inner membrane protein and requires VirB4, VirB7, and VirB8 for stabilization. J Bacteriol 192(11):2830–2838.  https://doi.org/10.1128/JB.01331-09CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mushegian AR, Fullner KJ, Koonin EV, Nester EW (1996) A family of lysozyme-like virulence factors in bacterial pathogens. Proc Natl Acad Sci USA 93:7321–7326CrossRefPubMedGoogle Scholar
  60. O’Callaghan D, Cazevieille C, Allardet-Servent A, Boschiroli ML, Bourg G, Foulongne V, Frutos P, Kulakov Y, Ramuz M (1999) A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33(6):1210–1220CrossRefPubMedGoogle Scholar
  61. Oikonomou CM, Jensen GJ (2016) A new view into prokaryotic cell biology from electron cryotomography. Nat Rev Microbiol 14(4):205–220.  https://doi.org/10.1038/nrmicro.2016.7CrossRefPubMedPubMedCentralGoogle Scholar
  62. Paschos A, den Hartigh A, Smith MA, Atluri VL, Sivanesan D, Tsolis RM, Baron C (2011) An In Vivo High-Throughput Screening Approach Targeting the Type IV Secretion System Component VirB8 Identified Inhibitors of Brucella abortus 2308 Proliferation. Infect Immun 79(3):1033–1043.  https://doi.org/10.1128/iai.00993-10CrossRefPubMedPubMedCentralGoogle Scholar
  63. Paschos A, Patey G, Sivanesan D, Gao C, Bayliss R, Waksman G, O’Callaghan D, Baron C (2006) Dimerization and interactions of Brucella suis VirB8 with VirB4 and VirB10 are required for its biological activity. Proc Natl Acad Sci USA 103:7252–7257CrossRefPubMedGoogle Scholar
  64. Porter CJ, Bantwal R, Bannam TL, Rosado CJ, Pearce MC, Adams V, Lyras D, Whisstock JC, Rood JI (2012) The conjugation protein TcpC from Clostridium perfringens is structurally related to the type IV secretion system protein VirB8 from gram-negative bacteria. Mol Microbiol 83(2):275–288.  https://doi.org/10.1111/j.1365-2958.2011.07930.xCrossRefPubMedPubMedCentralGoogle Scholar
  65. Ruer S, Pinotsis N, Steadman D, Waksman G, Remaut H (2015) Virulence-targeted antibacterials: concept, promise, and susceptibility to resistance mechanisms. Chem Biol Drug Des 86(4):379–399.  https://doi.org/10.1111/cbdd.12517CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sagulenko E, Sagulenko V, Chen J, Christie PJ (2001) Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol 183:5813–5825CrossRefPubMedPubMedCentralGoogle Scholar
  67. Savvides SN, Yeo HJ, Beck MR, Blaesing F, Lurz R, Lanka E, Buhrdorf R, Fischer W, Haas R, Waksman G (2003) VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J 22:1969–1980CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sayer JR, Wallden K, Pesnot T, Campbell F, Gane PJ, Simone M, Koss H, Buelens F, Boyle TP, Selwood DL, Waksman G, Tabor AB (2014) 2- and 3-substituted imidazo[1,2-a]pyrazines as inhibitors of bacterial type IV secretion. Bioorg Med Chem 22(22):6459–6470.  https://doi.org/10.1016/j.bmc.2014.09.036CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schmidt-Eisenlohr H, Domke N, Angerer C, Wanner G, Zambryski PC, Baron C (1999a) Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J Bacteriol 181:7485–7492PubMedPubMedCentralGoogle Scholar
  70. Schmidt-Eisenlohr H, Domke N, Baron C (1999b) TraC of IncN plasmid pKM101 associates with membranes and extracellular high molecular weight structures in Escherichia coli. J Bacteriol 181:5563–5571PubMedPubMedCentralGoogle Scholar
  71. Seubert A, Hiestand R, de la Cruz F, Dehio C (2003) A bacterial conjugation machinery recruited for pathogenesis. Mol Microbiol 49:1253–1266CrossRefPubMedGoogle Scholar
  72. Sharifahmadian M, Arya T, Bessette B, Lecoq L, Ruediger E, Omichinski JG, Baron C (2017) Monomer-to-dimer transition of Brucella suis type IV secretion system component VirB8 induces conformational changes. FEBS J 284(8):1218–1232.  https://doi.org/10.1111/febs.14049CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sivanesan D, Baron C (2011) The dimer interface of Agrobacterium tumefaciens VirB8 is important for type IV secretion system function, stability and for association of VirB2 with the core complex. J Bacteriol 193:2097–2106CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sivanesan D, Hancock MA, Villamil Giraldo AM, Baron C (2010) Quantitative analysis of VirB8-VirB9-VirB10 interactions provides a dynamic model of type IV secretion system core complex assembly. Biochemistry 49(21):4483–4493.  https://doi.org/10.1021/bi902201yCrossRefPubMedGoogle Scholar
  75. Smith MA, Coincon M, Paschos A, Jolicoeur B, Lavallee P, Sygusch J, Baron C (2012) Identification of the Binding Site of Brucella VirB8 Interaction Inhibitors. Chem Biol 19(8):1041–1048.  https://doi.org/10.1016/j.chembiol.2012.07.007CrossRefPubMedPubMedCentralGoogle Scholar
  76. Spudich GM, Fernandez D, Zhou X-R, Christie PJ (1996) Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci USA 93:7512–7515CrossRefPubMedGoogle Scholar
  77. Stachel SE, Messens E, van Montagu M, Zambryski PC (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629CrossRefGoogle Scholar
  78. Stachel SE, Zambryski PC (1986) Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation. Cell 47:155–157CrossRefPubMedGoogle Scholar
  79. Tato I, Matilla I, Arechaga I, Zunzunegui S, de la Cruz F, Cabezon E (2007) The ATPase activity of the DNA transporter TrwB is modulated by protein TrwA: implications for a common assembly mechanism of DNA translocating motors. J Biol Chem 282:25569–25576CrossRefPubMedGoogle Scholar
  80. Tato I, Zunzunegui S, de la Cruz F, Cabezon E (2005) TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc Natl Acad Sci USA 102:8156–8161CrossRefPubMedGoogle Scholar
  81. Terradot L, Bayliss R, Oomen C, Leonard G, Baron C, Waksman G (2005) Crystal Structures of the periplasmic domains of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc Natl Acad Sci USA 102:4596–4601CrossRefPubMedGoogle Scholar
  82. Thanassi DG, Bliska JB, Christie PJ (2012) Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 36(6):1046–1082.  https://doi.org/10.1111/j.1574-6976.2012.00342.xCrossRefPubMedPubMedCentralGoogle Scholar
  83. Thorstenson YR, Zambryski PC (1994) The essential virulence protein VirB8 localizes to the inner membrane of Agrobacterium tumefaciens. J Bacteriol 176:1711–1717CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tocheva EI, Li Z, Jensen GJ (2010) Electron cryotomography. Cold Spring Harb Perspect Biol 2(6):a003442.  https://doi.org/10.1101/cshperspect.a003442CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tree JJ, Wang D, McInally C, Mahajan A, Layton A, Houghton I, Elofsson M, Stevens MP, Gally DL, Roe AJ (2009) Characterization of the effects of salicylidene acylhydrazide compounds on type III secretion in Escherichia coli O157: H7. Infect Immun 77(10):4209–4220.  https://doi.org/10.1128/iai.00562-09CrossRefPubMedPubMedCentralGoogle Scholar
  86. Trokter M, Felisberto-Rodrigues C, Christie PJ, Waksman G (2014) Recent advances in the structural and molecular biology of type IV secretion systems. Curr Opin Struct Biol 27C:16–23.  https://doi.org/10.1016/j.sbi.2014.02.006CrossRefGoogle Scholar
  87. Villamil Giraldo AM, Mary C, Sivanesan D, Baron C (2015) VirB6 and VirB10 from the Brucella type IV secretion system interact via the N-terminal periplasmic domain of VirB6. FEBS Lett 589(15):1883–1889.  https://doi.org/10.1016/j.febslet.2015.05.051CrossRefPubMedPubMedCentralGoogle Scholar
  88. Villamil Giraldo AM, Sivanesan D, Carle A, Paschos A, Smith MA, Plesa M, Coulton J, Baron C (2012) Type IV secretion system core component VirB8 from Brucella binds to the globular domain of VirB5 and to a periplasmic domain of VirB6. Biochemistry 51(18):3881–3890.  https://doi.org/10.1021/bi300298vCrossRefPubMedPubMedCentralGoogle Scholar
  89. Vincent CD, Friedman JR, Jeong KC, Buford EC, Miller JL, Vogel JP (2006) Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol 62(5):1278–1291CrossRefPubMedGoogle Scholar
  90. Wallden K, Williams R, Yan J, Lian PW, Wang L, Thalassinos K, Orlova EV, Waksman G (2012) Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc Natl Acad Sci USA 109(28):11348–11353.  https://doi.org/10.1073/pnas.1201428109CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wang D, Zetterstrom CE, Gabrielsen M, Beckham KS, Tree JJ, Macdonald SE, Byron O, Mitchell TJ, Gally DL, Herzyk P, Mahajan A, Uvell H, Burchmore R, Smith BO, Elofsson M, Roe AJ (2011) Identification of bacterial target proteins for the salicylidene acylhydrazide class of virulence-blocking compounds. J Biol Chem 286(34):29922–29931.  https://doi.org/10.1074/jbc.m111.233858CrossRefPubMedPubMedCentralGoogle Scholar
  92. Ward DV, Draper O, Zupan JR, Zambryski PC (2002) Peptide linkage mapping of the A. tumefaciens vir-encoded type IV secretion system reveals novel protein subassemblies. Proc Natl Acad Sci USA 99:11493–11500CrossRefPubMedGoogle Scholar
  93. Yeo H-J, Yuan Q, Beck MR, Baron C, Waksman G (2003) Structural and functional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. Proc Natl Acad Sci USA 100:15947–15962CrossRefPubMedGoogle Scholar
  94. Yeo HJ, Savvides SN, Herr AB, Lanka E, Waksman G (2000) Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 6:1461–1472CrossRefPubMedGoogle Scholar
  95. Yuan Q, Carle A, Gao C, Sivanesan D, Aly K, Höppner C, Krall L, Domke N, Baron C (2005) Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems. J Biol Chem 280:26349–26359CrossRefPubMedGoogle Scholar
  96. Zahrl D, Wagner M, Bischof K, Bayer M, Zavecz B, Beranek A, Ruckenstuhl C, Zarfel G, Koraimann G (2005) Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology 151:3455–3467CrossRefPubMedGoogle Scholar
  97. Zambelloni R, Connolly JPR, Huerta Uribe A, Burgess K, Marquez R, Roe AJ (2017) Novel compounds targeting the enterohemorrhagic Escherichia coli type three secretion system reveal insights into mechanisms of secretion inhibition. Mol Microbiol.  https://doi.org/10.1111/mmi.13719CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zambelloni R, Marquez R, Roe AJ (2015) Development of antivirulence compounds: a biochemical review. Chem Biol Drug Des 85(1):43–55.  https://doi.org/10.1111/cbdd.12430CrossRefPubMedGoogle Scholar
  99. Zupan J, Hackworth CA, Aguilar J, Ward D, Zambryski P (2007) VirB1* promotes T-pilus formation in the vir-type IV secretion system of Agrobacterium tumefaciens. J Bacteriol 189:6551–6563CrossRefPubMedPubMedCentralGoogle Scholar
  100. Zupan J, Muth TR, Draper O, Zambryski PC (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Medicine, Faculty of MedicineUniversité de MontréalMontrealCanada

Personalised recommendations