Advertisement

Relaxases and Plasmid Transfer in Gram-Negative Bacteria

  • Ellen L. Zechner
  • Gabriel Moncalián
  • Fernando de la Cruz
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 413)

Abstract

All plasmids that spread by conjugative transfer encode a relaxase. That includes plasmids that encode the type IV secretion machinery necessary to mediate cell to cell transfer, as well as mobilizable plasmids that exploit the existence of other plasmids’ type IV secretion machinery to enable their own lateral spread. Relaxases perform key functions in plasmid transfer by first binding to their cognate plasmid as part of a multiprotein complex called the relaxosome, which is then specifically recognized by a receptor protein at the opening of the secretion channel. Relaxases catalyze a site- and DNA-strand-specific cleavage reaction on the plasmid then pilot the single strand of plasmid DNA through the membrane-spanning type IV secretion channel as a nucleoprotein complex. In the recipient cell, relaxases help terminate the transfer process efficiently and stabilize the incoming plasmid DNA. Here, we review the well-studied MOBF family of relaxases to describe the biochemistry of these versatile enzymes and integrate current knowledge into a mechanistic model of plasmid transfer in Gram-negative bacteria.

Keywords

Bacterial conjugation Bacterial type IV secretion Conjugative DNA processing Relaxase DNA helicase Plasmid 

Notes

Acknowledgements

Work in the authors’ laboratories was supported by Austrian Science Fund (FWF) grants P24016 and W901 DK Molecular Enzymology (ELZ) and BioTechMed-Graz (ELZ) and by the Spanish Ministry of Economy and Competitiveness grants BFU2014-55534-C2-1-P (FdlC) and BFU2014-55534-C2-2-P (GM).

References

  1. Abdel-Monem M, Durwald H, Hoffmann-Berling H (1976) Enzymic unwinding of DNA. 2. Chain separation by an ATP-dependent DNA unwinding enzyme. Eur J Biochem 65(2):441–449CrossRefPubMedGoogle Scholar
  2. Abdel-Monem M, Hoffmann-Berling H (1976) Enzymic unwinding of DNA. 1. Purification and characterization of a DNA-dependent ATPase from Escherichia coli. Eur J Biochem 65(2):431–440CrossRefPubMedGoogle Scholar
  3. Alperi A, Larrea D, Fernandez-Gonzalez E, Dehio C, Zechner EL, Llosa M (2013) A translocation motif in relaxase TrwC specifically affects recruitment by its conjugative type IV secretion system. J Bacteriol 195(22):4999–5006.  https://doi.org/10.1128/JB.00367-13CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73(4):775–808.  https://doi.org/10.1128/MMBR.00023-09CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arutyunov D, Frost LS (2013) F conjugation: back to the beginning. Plasmid 70(1):18–32.  https://doi.org/10.1016/j.plasmid.2013.03.010CrossRefPubMedPubMedCentralGoogle Scholar
  6. Atmakuri K, Cascales E, Burton OT, Banta LM, Christie PJ (2007) Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J 26(10):2540–2551.  https://doi.org/10.1038/sj.emboj.7601696CrossRefPubMedPubMedCentralGoogle Scholar
  7. Atmakuri K, Cascales E, Christie PJ (2004) Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54(5):1199–1211.  https://doi.org/10.1111/j.1365-2958.2004.04345.xCrossRefPubMedPubMedCentralGoogle Scholar
  8. Beranek A, Zettl M, Lorenzoni K, Schauer A, Manhart M, Koraimann G (2004) Thirty-eight C-terminal amino acids of the coupling protein TraD of the F-like conjugative resistance plasmid R1 are required and sufficient to confer binding to the substrate selector protein TraM. J Bacteriol 186(20):6999–7006.  https://doi.org/10.1128/JB.186.20.6999-7006.2004CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bikard D, Loot C, Baharoglu Z, Mazel D (2010) Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev 74(4):570–588.  https://doi.org/10.1128/MMBR.00026-10CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boer R, Russi S, Guasch A, Lucas M, Blanco AG, Perez-Luque R, Coll M, de la Cruz F (2006) Unveiling the molecular mechanism of a conjugative relaxase: The structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site. J Mol Biol 358(3):857–869.  https://doi.org/10.1016/j.jmb.2006.02.018CrossRefPubMedGoogle Scholar
  11. Byrd DR, Sampson JK, Ragonese HM, Matson SW (2002) Structure-function analysis of Escherichia coli DNA helicase I reveals non-overlapping transesterase and helicase domains. J Biol Chem 277(45):42645–42653.  https://doi.org/10.1074/jbc.M205984200CrossRefPubMedGoogle Scholar
  12. Cabezón E, Lanka E, de la Cruz F (1994) Requirements for mobilization of plasmids RSF1010 and ColE1 by the IncW plasmid R388: trwB and RP4 traG are interchangeable. J Bacteriol 176(14):4455–4458CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cabezón E, Sastre JI, de la Cruz F (1997) Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol Gen Genet 254(4):400–406CrossRefPubMedGoogle Scholar
  14. Carballeira JD, Gonzalez-Perez B, Moncalian G, de la Cruz F (2014) A high security double lock and key mechanism in HUH relaxases controls oriT-processing for plasmid conjugation. Nucleic Acids Res 42(16):10632–10643.  https://doi.org/10.1093/nar/gku741CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cascales E, Christie PJ (2004) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304(5674):1170–1173.  https://doi.org/10.1126/science.1095211CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chandler M, de la Cruz F, Dyda F, Hickman AB, Moncalian G, Ton-Hoang B (2013) Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat Rev Microbiol 11(8):525–538.  https://doi.org/10.1038/nrmicro3067CrossRefPubMedGoogle Scholar
  17. Cheng Y, McNamara DE, Miley MJ, Nash RP, Redinbo MR (2011) Functional characterization of the multidomain F plasmid TraI relaxase-helicase. J Biol Chem 286(14):12670–12682.  https://doi.org/10.1074/jbc.M110.207563CrossRefPubMedPubMedCentralGoogle Scholar
  18. Csitkovits VC, Zechner EL (2003) Extent of single-stranded DNA required for efficient TraI helicase activity in vitro. J Biol Chem 278(49):48696–48703.  https://doi.org/10.1074/jbc.M310025200CrossRefPubMedGoogle Scholar
  19. Datta S, Larkin C, Schildbach JF (2003) Structural insights into single-stranded DNA binding and cleavage by F factor TraI. Structure 11(11):1369–1379.  https://doi.org/10.1016/j.str.2003.10.001CrossRefPubMedGoogle Scholar
  20. de la Cruz F, Frost LS, Meyer RJ, Zechner EL (2010) Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 34(1):18–40.  https://doi.org/10.1111/j.1574-6976.2009.00195.xCrossRefPubMedGoogle Scholar
  21. Di Laurenzio L, Frost LS, Paranchych W (1992) The TraM protein of the conjugative plasmid F binds to the origin of transfer of the F and ColE1 plasmids. Mol Microbiol 6(20):2951–2959.  https://doi.org/10.1111/j.1365-2958.1992.tb01754.xCrossRefPubMedGoogle Scholar
  22. Disque-Kochem C, Dreiseikelmann B (1997) The cytoplasmic DNA-binding protein TraM binds to the inner membrane protein TraD in vitro. J Bacteriol 179(19):6133–6137.  https://doi.org/10.1128/jb.179.19.6133-6137.1997CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dostal L, Schildbach JF (2010) Single-stranded DNA binding by F TraI relaxase and helicase domains is coordinately regulated. J Bacteriol 192(14):3620–3628.  https://doi.org/10.1128/JB.00154-10CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dostal L, Shao S, Schildbach JF (2011) Tracking F plasmid TraI relaxase processing reactions provides insight into F plasmid transfer. Nucleic Acids Res 39(7):2658–2670.  https://doi.org/10.1093/nar/gkq1137CrossRefPubMedGoogle Scholar
  25. Durand E, Oomen C, Waksman G (2010) Biochemical dissection of the ATPase TraB, the VirB4 homologue of the Escherichia coli pKM101 conjugation machinery. J Bacteriol 192(9):2315–2323.  https://doi.org/10.1128/JB.01384-09CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fekete RA, Frost LS (2000) Mobilization of chimeric oriT plasmids by F and R100-1: role of relaxosome formation in defining plasmid specificity. J Bacteriol 182(14):4022–4027CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fekete RA, Frost LS (2002) Characterizing the DNA contacts and cooperative binding of F plasmid TraM to its cognate sites at oriT. J Biol Chem 277(19):16705–16711.  https://doi.org/10.1074/jbc.M111682200CrossRefPubMedGoogle Scholar
  28. Francia MV, Clewell DB, de la Cruz F, Moncalian G (2013) Catalytic domain of plasmid pAD1 relaxase TraX defines a group of relaxases related to restriction endonucleases. Proc Natl Acad Sci U S A 110(33):13606–13611.  https://doi.org/10.1073/pnas.1310037110CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fukuda H, Ohtsubo E (1995) Large scale purification and characterization of TraI endonuclease encoded by sex factor plasmid R100. J Biol Chem 270(36):21319–21325.  https://doi.org/10.1074/jbc.270.36.21319CrossRefPubMedGoogle Scholar
  30. Gao Q, Luo Y, Deonier RC (1994) Initiation and termination of DNA transfer at F plasmid oriT. Mol Microbiol 11(3):449–458CrossRefPubMedGoogle Scholar
  31. Garcillan-Barcia MP, Francia MV, de la Cruz F (2009) The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33(3):657–687.  https://doi.org/10.1111/j.1574-6976.2009.00168.xCrossRefPubMedGoogle Scholar
  32. Gonzalez-Perez B, Carballeira JD, Moncalian G, de la Cruz F (2009) Changing the recognition site of a conjugative relaxase by rational design. Biotechnol J 4(4):554–557.  https://doi.org/10.1002/biot.200800184CrossRefPubMedGoogle Scholar
  33. Gonzalez-Perez B, Lucas M, Cooke LA, Vyle JS, de la Cruz F, Moncalian G (2007) Analysis of DNA processing reactions in bacterial conjugation by using suicide oligonucleotides. EMBO J 26(16):3847–3857.  https://doi.org/10.1038/sj.emboj.7601806CrossRefPubMedPubMedCentralGoogle Scholar
  34. Grandoso G, Avila P, Cayon A, Hernando MA, Llosa M, de la Cruz F (2000) Two active-site tyrosyl residues of protein TrwC act sequentially at the origin of transfer during plasmid R388 conjugation. J Mol Biol 295(5):1163–1172.  https://doi.org/10.1006/jmbi.1999.3425CrossRefPubMedGoogle Scholar
  35. Grandoso G, Llosa M, Zabala JC, de la Cruz F (1994) Purification and biochemical characterization of TrwC, the helicase involved in plasmid R388 conjugal DNA transfer. Eur J Biochem 226(2):403–412.  https://doi.org/10.1111/j.1432-1033.1994.tb20065.xCrossRefPubMedGoogle Scholar
  36. Grohmann E, Christie PJ, Waksman G, Backert S (2018) Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 107:455–471  https://doi.org/10.1111/mmi.13896CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gruber CJ, Lang S, Rajendra VK, Nuk M, Raffl S, Schildbach JF, Zechner EL (2016) Conjugative DNA transfer is enhanced by plasmid R1 partitioning proteins. Front Mol Biosci 3:32.  https://doi.org/10.3389/fmolb.2016.00032CrossRefPubMedPubMedCentralGoogle Scholar
  38. Guasch A, Lucas M, Moncalían G, Cabezas M, Pérez-Luque R, Gomis-Rüth FX, de la Cruz F, Coll M (2003) Recognition and processing of the origin of transfer DNA by conjugative relaxase TrwC. Nat Struct Biol 10(12):1002–1010.  https://doi.org/10.1038/nsb1017CrossRefPubMedGoogle Scholar
  39. Guglielmini J, Quintais L, Garcillan-Barcia MP, de la Cruz F, Rocha EP (2011) The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet 7(8):e1002222.  https://doi.org/10.1371/journal.pgen.1002222CrossRefPubMedPubMedCentralGoogle Scholar
  40. Harley MJ, Schildbach JF (2003) Swapping single-stranded DNA sequence specificities of relaxases from conjugative plasmids F and R100. Proc Natl Acad Sci U S A 100(20):11243–11248.  https://doi.org/10.1073/pnas.2035001100CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ilangovan A, Kay CWM, Roier S, El Mkami H, Salvadori E, Zechner EL, Zanetti G, Waksman G (2017) Cryo-EM structure of a relaxase reveals the molecular basis of DNA unwinding during bacterial conjugation. Cell 169(4):708–721 e712.  https://doi.org/10.1016/j.cell.2017.04.010CrossRefPubMedPubMedCentralGoogle Scholar
  42. Inamoto S, Fukuda H, Abo T, Ohtsubo E (1994) Site- and strand-specific nicking at oriT of plasmid R100 in a purified system: enhancement of the nicking activity of TraI (helicase I) with TraY and IHF. J Biochem 116(4):838–844CrossRefPubMedGoogle Scholar
  43. Karl W, Bamberger M, Zechner EL (2001) Transfer protein TraY of plasmid R1 stimulates TraI-catalyzed oriT cleavage in vivo. J Bacteriol 183(3):909–914.  https://doi.org/10.1128/JB.183.3.909-914.2001CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kuhn B, Abdel-Monem M, Krell H, Hoffmann-Berling H (1979) Evidence for two mechanisms for DNA unwinding catalyzed by DNA helicases. J Biol Chem 254(22):11343–11350PubMedGoogle Scholar
  45. Kupelwieser G, Schwab M, Högenauer G, Koraimann G, Zechner EL (1998) Transfer protein TraM stimulates TraI-catalyzed cleavage of the transfer origin of plasmid R1 in vivo. J Mol Biol 275(1):81–94.  https://doi.org/10.1006/jmbi.1997.1436CrossRefPubMedGoogle Scholar
  46. Lahue EE, Matson SW (1988) Escherichia coli DNA helicase I catalyzes a unidirectional and highly processive unwinding reaction. J Biol Chem 263(7):3208–3215PubMedGoogle Scholar
  47. Lang S, Gruber CJ, Raffl S, Reisner A, Zechner EL (2014) Common requirement for the relaxosome of plasmid R1 in multiple activities of the conjugative type IV secretion system. J Bacteriol 196(11):2108–2121.  https://doi.org/10.1128/JB.00045-13CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lang S, Gruber K, Mihajlovic S, Arnold R, Gruber CJ, Steinlechner S, Jehl MA, Rattei T, Frohlich KU, Zechner EL (2010) Molecular recognition determinants for type IV secretion of diverse families of conjugative relaxases. Mol Microbiol 78(6):1539–1555.  https://doi.org/10.1111/j.1365-2958.2010.07423.xCrossRefPubMedGoogle Scholar
  49. Lang S, Kirchberger PC, Gruber CJ, Redzej A, Raffl S, Zellnig G, Zangger K, Zechner EL (2011) An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation. Mol Microbiol 82(5):1071–1085.  https://doi.org/10.1111/j.1365-2958.2011.07872.xCrossRefPubMedPubMedCentralGoogle Scholar
  50. Lanka E, Wilkins BM (1995) DNA processing reactions in bacterial conjugation. Annu Rev Biochem 64:141–169.  https://doi.org/10.1146/annurev.bi.64.070195.001041CrossRefPubMedGoogle Scholar
  51. Larkin C, Datta S, Harley MJ, Anderson BJ, Ebie A, Hargreaves V, Schildbach JF (2005) Inter- and intramolecular determinants of the specificity of single-stranded DNA binding and cleavage by the F factor relaxase. Structure 13(10):1533–1544.  https://doi.org/10.1016/j.str.2005.06.013CrossRefPubMedGoogle Scholar
  52. Larkin C, Haft RJ, Harley MJ, Traxler B, Schildbach JF (2007) Roles of active site residues and the HUH motif of the F plasmid TraI relaxase. J Biol Chem 282(46):33707–33713.  https://doi.org/10.1074/jbc.M703210200CrossRefPubMedGoogle Scholar
  53. Lee CA, Thomas J, Grossman AD (2012) The Bacillus subtilis conjugative transposon ICEBs1 mobilizes plasmids lacking dedicated mobilization functions. J Bacteriol 194(12):3165–3172.  https://doi.org/10.1128/JB.00301-12CrossRefPubMedPubMedCentralGoogle Scholar
  54. Li F, Alvarez-Martinez C, Chen Y, Choi KJ, Yeo HJ, Christie PJ (2012) Enterococcus faecalis PrgJ, a VirB4-like ATPase, mediates pCF10 conjugative transfer through substrate binding. J Bacteriol 194(15):4041–4051.  https://doi.org/10.1128/JB.00648-12CrossRefPubMedPubMedCentralGoogle Scholar
  55. Llosa M, Alkorta I (2018) Current topics in microbiology and immunology, vol 413. In: Backert S, Grohmann E (eds) Type IV secretion in gram-negative and gram-positive bacteria. pp 143–168Google Scholar
  56. Llosa M, Gomis-Ruth FX, Coll M, de la Cruz FdF (2002) Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol 45(1):1–8.  https://doi.org/10.1046/j.1365-2958.2002.03014.xCrossRefPubMedGoogle Scholar
  57. Llosa M, Grandoso G, de la Cruz F (1995) Nicking activity of TrwC directed against the origin of transfer of the IncW plasmid R388. J Mol Biol 246(1):54–62.  https://doi.org/10.1006/jmbi.1994.0065CrossRefPubMedGoogle Scholar
  58. Llosa M, Grandoso G, Hernando MA, de la Cruz F (1996) Functional domains in protein TrwC of plasmid R388: dissected DNA strand transferase and DNA helicase activities reconstitute protein function. J Mol Biol 264(1):56–67.  https://doi.org/10.1006/jmbi.1996.0623CrossRefPubMedGoogle Scholar
  59. Lu J, Edwards RA, Wong JJ, Manchak J, Scott PG, Frost LS, Glover JN (2006) Protonation-mediated structural flexibility in the F conjugation regulatory protein, TraM. Embo J 25(12):2930–2939.  https://doi.org/10.1038/sj.emboj.7601151CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lu J, Frost LS (2005) Mutations in the C-terminal region of TraM provide evidence for in vivo TraM-TraD interactions during F-plasmid conjugation. J Bacteriol 187(14):4767–4773.  https://doi.org/10.1128/JB.187.14.4767-4773.2005CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lu J, Wong JJ, Edwards RA, Manchak J, Frost LS, Glover JN (2008) Structural basis of specific TraD-TraM recognition during F plasmid-mediated bacterial conjugation. Mol Microbiol 70(1):89–99.  https://doi.org/10.1111/j.1365-2958.2008.06391.xCrossRefPubMedPubMedCentralGoogle Scholar
  62. Lucas M, Gonzalez-Perez B, Cabezas M, Moncalian G, Rivas G, de la Cruz F (2010) Relaxase DNA binding and cleavage are two distinguishable steps in conjugative DNA processing that involve different sequence elements of the nic site. J Biol Chem 285(12):8918–8926.  https://doi.org/10.1074/jbc.M109.057539CrossRefPubMedPubMedCentralGoogle Scholar
  63. Luo Y, Gao Q, Deonier RC (1994) Mutational and physical analysis of F plasmid traY protein binding to oriT. Mol Microbiol 11(3):459–469.  https://doi.org/10.1111/j.1365-2958.1994.tb00327.xCrossRefPubMedGoogle Scholar
  64. Matson SW, Ragonese H (2005) The F-plasmid TraI protein contains three functional domains required for conjugative DNA strand transfer. J Bacteriol 187(2):697–706.  https://doi.org/10.1128/JB.187.2.697-706.2005CrossRefPubMedPubMedCentralGoogle Scholar
  65. Matson SW, Sampson JK, Byrd DR (2001) F plasmid conjugative DNA transfer: the TraI helicase activity is essential for DNA strand transfer. J Biol Chem 276(4):2372–2379.  https://doi.org/10.1074/jbc.M008728200CrossRefPubMedGoogle Scholar
  66. Mihajlovic S, Lang S, Sut MV, Strohmaier H, Gruber CJ, Koraimann G, Cabezón E, Moncalián G, de la Cruz F, Zechner EL (2009) Plasmid R1 conjugative DNA processing is regulated at the coupling protein interface. J Bacteriol 191(22):6877–6887.  https://doi.org/10.1128/JB.00918-09CrossRefPubMedPubMedCentralGoogle Scholar
  67. Møller-Jensen J, Borch J, Dam M, Jensen RB, Roepstorff P, Gerdes K (2003) Bacterial mitosis: ParM of plasmid R1 moves plasmid DNA by an actin-like insertional polymerization mechanism. Mol Cell 12(6):1477–1487.  https://doi.org/10.1016/S1097-2765(03)00451-9CrossRefPubMedGoogle Scholar
  68. Moncalián G, de la Cruz F (2004) DNA binding properties of protein TrwA, a possible structural variant of the Arc repressor superfamily. Biochim Biophys Acta 1701(1–2):15–23.  https://doi.org/10.1016/j.bbapap.2004.05.009CrossRefPubMedGoogle Scholar
  69. Moncalián G, Grandoso G, Llosa M, de la Cruz F (1997) oriT-processing and regulatory roles of TrwA protein in plasmid R388 conjugation. J Mol Biol 270(2):188–200.  https://doi.org/10.1006/jmbi.1997.1082CrossRefPubMedGoogle Scholar
  70. Moncalián G, Valle M, Valpuesta JM, de la Cruz F (1999) IHF protein inhibits cleavage but not assembly of plasmid R388 relaxosomes. Mol Microbiol 31(6):1643–1652.  https://doi.org/10.1046/j.1365-2958.1999.01288.xCrossRefPubMedGoogle Scholar
  71. Nelson WC, Howard MT, Sherman JA, Matson SW (1995) The traY gene product and integration host factor stimulate Escherichia coli DNA helicase I-catalyzed nicking at the F plasmid oriT. J Biol Chem 270(47):28374–28380.  https://doi.org/10.1074/jbc.270.47.28374CrossRefPubMedGoogle Scholar
  72. Nuk MR, Reisner A, Neuwirth M, Schilcher K, Arnold R, Jehl A, Rattei T, Zechner EL (2011) Functional analysis of the finO distal region of plasmid R1. Plasmid 65(2):159–168.  https://doi.org/10.1016/j.plasmid.2010.12.002CrossRefPubMedGoogle Scholar
  73. Pansegrau W, Lanka E (1996) Enzymology of DNA transfer by conjugative mechanisms. Prog Nucleic Acid Res Mol Biol 54:197–251CrossRefPubMedGoogle Scholar
  74. Pansegrau W, Schröder W, Lanka E (1993) Relaxase (TraI) of IncP alpha plasmid RP4 catalyzes a site-specific cleaving-joining reaction of single-stranded DNA. Proc Natl Acad Sci U S A 90(7):2925–2929CrossRefPubMedPubMedCentralGoogle Scholar
  75. Pena A, Matilla I, Martin-Benito J, Valpuesta JM, Carrascosa JL, de la Cruz F, Cabezon E, Arechaga I (2012) The hexameric structure of a conjugative VirB4 protein ATPase provides new insights for a functional and phylogenetic relationship with DNA translocases. J Biol Chem 287(47):39925–39932.  https://doi.org/10.1074/jbc.M112.413849CrossRefPubMedPubMedCentralGoogle Scholar
  76. Penfold SS, Simon J, Frost LS (1996) Regulation of the expression of the traM gene of the F sex factor of Escherichia coli. Mol Microbiol 20(3):549–558.  https://doi.org/10.1046/j.1365-2958.1996.5361059.xCrossRefPubMedGoogle Scholar
  77. Ragonese H, Haisch D, Villareal E, Choi JH, Matson SW (2007) The F plasmid-encoded TraM protein stimulates relaxosome-mediated cleavage at oriT through an interaction with TraI. Mol Microbiol 63(4):1173–1184.  https://doi.org/10.1111/j.1365-2958.2006.05576.xCrossRefPubMedGoogle Scholar
  78. Redzej A, Ilangovan A, Lang S, Gruber CJ, Topf M, Zangger K, Zechner EL, Waksman G (2013) Structure of a translocation signal domain mediating conjugative transfer by type IV secretion systems. Mol Microbiol 89(2):324–333.  https://doi.org/10.1111/mmi.12275CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rice PA, Yang S, Mizuuchi K, Nash HA (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87(7):1295–1306.  https://doi.org/10.1016/S0092-8674(00)81824-3CrossRefPubMedGoogle Scholar
  80. Ripoll-Rozada J, Zunzunegui S, de la Cruz F, Arechaga I, Cabezon E (2013) Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J Bacteriol 195(18):4195–4201.  https://doi.org/10.1128/JB.00437-13CrossRefPubMedPubMedCentralGoogle Scholar
  81. Salje J, Gayathri P, Lowe J (2010) The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments. Nat Rev Microbiol 8(10):683–692.  https://doi.org/10.1038/nrmicro2425CrossRefPubMedGoogle Scholar
  82. Sastre JI, Cabezón E, de la Cruz F (1998) The carboxyl terminus of protein TraD adds specificity and efficiency to F-plasmid conjugative transfer. J Bacteriol 180(22):6039–6042PubMedPubMedCentralGoogle Scholar
  83. Scherzinger E, Lurz R, Otto S, Dobrinski B (1992) In vitro cleavage of double- and single-stranded DNA by plasmid RSF1010-encoded mobilization proteins. Nucleic Acids Res 20(1):41–48CrossRefPubMedPubMedCentralGoogle Scholar
  84. Schwab M, Reisenzein H, Högenauer G (1993) TraM of plasmid R1 regulates its own expression. Mol Microbiol 7(5):795–803.  https://doi.org/10.1111/j.1365-2958.1993.tb01170.xCrossRefPubMedPubMedCentralGoogle Scholar
  85. Sikora B, Eoff RL, Matson SW, Raney KD (2006) DNA unwinding by Escherichia coli DNA helicase I (TraI) provides evidence for a processive monomeric molecular motor. J Biol Chem 281(47):36110–36116.  https://doi.org/10.1074/jbc.M604412200CrossRefPubMedGoogle Scholar
  86. Stern JC, Schildbach JF (2001) DNA recognition by F factor TraI36: highly sequence-specific binding of single-stranded DNA. Biochemistry 40(38):11586–11595.  https://doi.org/10.1021/bi010877qCrossRefPubMedGoogle Scholar
  87. Stockner T, Plugariu C, Koraimann G, Högenauer G, Bermel W, Prytulla S, Sterk H (2001) Solution structure of the DNA-binding domain of TraM. Biochemistry 40(11):3370–3377.  https://doi.org/10.1021/bi002031cCrossRefPubMedGoogle Scholar
  88. Street LM, Harley MJ, Stern JC, Larkin C, Williams SL, Miller DL, Dohm JA, Rodgers ME, Schildbach JF (2003) Subdomain organization and catalytic residues of the F factor TraI relaxase domain. Biochim Biophys Acta 1646(1–2):86–99.  https://doi.org/10.1016/S1570-9639(02)00553-8CrossRefPubMedGoogle Scholar
  89. Sut MV, Mihajlovic S, Lang S, Gruber CJ, Zechner EL (2009) Protein and DNA effectors control the TraI conjugative helicase of plasmid R1. J Bacteriol 191(22):6888–6899.  https://doi.org/10.1128/JB.00920-09CrossRefPubMedPubMedCentralGoogle Scholar
  90. Tato I, Matilla I, Arechaga I, Zunzunegui S, de la Cruz F, Cabezon E (2007) The ATPase activity of the DNA transporter TrwB is modulated by protein TrwA: implications for a common assembly mechanism of DNA translocating motors. J Biol Chem 282(35):25569–25576.  https://doi.org/10.1074/jbc.M703464200CrossRefPubMedGoogle Scholar
  91. Ward DV, Draper O, Zupan JR, Zambryski PC (2002) Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci U S A 99(17):11493–11500.  https://doi.org/10.1073/pnas.172390299CrossRefPubMedPubMedCentralGoogle Scholar
  92. Williams SL, Schildbach JF (2006) Examination of an inverted repeat within the F factor origin of transfer: context dependence of F TraI relaxase DNA specificity. Nucleic Acids Res 34(2):426–435.  https://doi.org/10.1093/nar/gkj444CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wong JJ, Lu J, Edwards RA, Frost LS, Glover JN (2011) Structural basis of cooperative DNA recognition by the plasmid conjugation factor. TraM. Nucleic Acids Res 39(15):6775–6788.  https://doi.org/10.1093/nar/gkr296CrossRefPubMedGoogle Scholar
  94. Wright LD, Grossman AD (2016) Autonomous replication of the conjugative transposon Tn916. J Bacteriol 198(24):3355–3366.  https://doi.org/10.1128/JB.00639-16CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhang S, Meyer R (1997) The relaxosome protein MobC promotes conjugal plasmid mobilization by extending DNA strand separation to the nick site at the origin of transfer. Mol Microbiol 25(3):509–516.  https://doi.org/10.1046/j.1365-2958.1997.4861849.xCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ellen L. Zechner
    • 1
  • Gabriel Moncalián
    • 2
  • Fernando de la Cruz
    • 2
  1. 1.Institute of Molecular Biosciences, University of GrazGrazAustria
  2. 2.Departamento de Biología MolecularUniversidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas—Universidad de CantabriaSantanderSpain

Personalised recommendations