Advertisement

Role and Function of the Type IV Secretion System in Anaplasma and Ehrlichia Species

  • Yasuko Rikihisa
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 413)

Abstract

The obligatory intracellular pathogens Anaplasma phagocytophilum and Ehrlichia chaffeensis proliferate within membrane-bound vacuoles of human leukocytes and cause potentially fatal emerging infectious diseases. Despite the reductive genome evolution in this group of bacteria, genes encoding the type IV secretion system (T4SS), which is homologous to the VirB/VirD4 system of the plant pathogen Agrobacterium tumefaciens, have been expanded and are highly expressed in A. phagocytophilum and E. chaffeensis in human cells. Of six T4SS effector proteins identified in them, roles and functions have been described so far only for ankyrin repeat domain-containing protein A (AnkA), Anaplasma translocated substrate 1 (Ats-1), and Ehrlichia translocated factor 1 (Etf-1, ECH0825). These effectors are abundantly produced and secreted into the host cytoplasm during infection, but not toxic to host cells. They contain eukaryotic protein motifs or organelle localization signals and have distinct subcellular localization, target to specific host cell molecules to promote infection. Ats-1 and Etf-1 are orthologous proteins, subvert two important innate immune mechanisms against intracellular infection, cellular apoptosis and autophagy, and manipulate autophagy to gain nutrients from host cells. Although Ats-1 and Etf-1 have similar functions and roles in obligatory intracellular infection, they are specifically adapted to the distinct membrane-bound intracellular niche of A. phagocytophilum and E. chaffeensis, respectively. Ectopic expression of these effectors enhances respective bacterial infection, whereas intracellular delivery of antibodies against these effectors or targeted knockdown of the effector with antisense peptide nucleic acid significantly impairs bacterial infection. Thus, both T4SSs have evolved as important survival and nutritional virulence mechanism in these obligatory intracellular bacteria. Future studies on the functions of Anaplasma and Ehrlichia T4SS effector molecules and signaling pathways will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied toward the treatment and control of anaplasmosis and ehrlichiosis.

Keywords

Type IV secretion system Effectors Anaplasma Ehrlichia Apoptosis Autophagy 

Notes

Acknowledgements

The author thanks T. Vojt for help in preparing the figures. Some of the studies from the authors’ laboratory reported in this review were supported by a grant (R01AI054476) from the National Institutes of Health.

References

  1. Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808. http://dx.doi.org/73/4/775 (PMID:19946141) ([pii] 10.1128/mmbr.00023-09)CrossRefPubMedGoogle Scholar
  2. Al-Khedery B, Lundgren AM., Stuen S, Granquist EG, Munderloh UG, Nelson CM et al (2012) Structure of the type IV secretion system in different strains of Anaplasma phagocytophilum. BMC Genomics 13:678. http://dx.doi.org/10.1186/1471-2164-13-678 (PMID:23190684)CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allen MB, Pritt BS, Sloan LM, Paddock CD, Musham CK, Ramos JM et al (2014) First reported case of Ehrlichia ewingii involving human bone marrow. J Clin Microbiol 52:4102–4104. http://dx.doi.org/10.1128/JCM.01670-14 (PMID:25187638)CrossRefPubMedPubMedCentralGoogle Scholar
  4. Backert S, Meyer TF (2006) Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9(2):207–217.  https://doi.org/10.1016/j.mib.2006.02.008CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bakken JS, Dumler S (2008) Human granulocytic anaplasmosis. Infect Dis Clin North Am 22:433–448, viii (PMID:18755383)CrossRefPubMedGoogle Scholar
  6. Bao W, Kumagai Y, Niu H, Yamaguchi M, Miura K, Rikihisa Y (2009) Four VirB6 paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-containing vacuoles. J Bacteriol 191:278–286 (PMID:18952796)CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barnett TC, Liebl D, Seymour LM, Gillen CM, Lim JY, Larock CN, et al (2013) The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 14:675–682. http://dx.doi.org/10.1016/j.chom.2013.11.003 (PMID:24331465)CrossRefGoogle Scholar
  8. Barnewall RE, Rikihisa Y, Lee EH (1997) Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor. Infect Immun 65:1455–1461 (PMID:9119487)Google Scholar
  9. Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO (1998) Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 273:21883–21892 (PMID:9705327)CrossRefPubMedGoogle Scholar
  10. Bhamidipati PK, Kantarjian H, Cortes J, Cornelison AM, Jabbour E (2013) Management of imatinib-resistant patients with chronic myeloid leukemia. Ther Adv Hematol 4:103–117. http://dx.doi.org/10.1177/2040620712468289 (PMID:23610618)CrossRefGoogle Scholar
  11. Borjesson DL, Kobayashi SD, Whitney AR, Voyich JM, Argue CM, Deleo FR (2005) Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J Immunol 174:6364–6372 (PMID:15879137)CrossRefPubMedGoogle Scholar
  12. Buller RS, Arens M, Hmiel SP, Paddock CD, Sumner JW, Rikhisa Y et al. (1999) Ehrlichia ewingii, a newly recognized agent of human ehrlichiosis. N Engl J Med 341:148–155 (PMID:10403852)CrossRefPubMedGoogle Scholar
  13. Capdeville R, Buchdunger E, Zimmermann J, Matter A (2002) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 1:493–502 (PMID:12120256)CrossRefPubMedGoogle Scholar
  14. Carlyon JA, Abdel-Latif D, Pypaert M, Lacy P, Fikrig E (2004) Anaplasma phagocytophilum utilizes multiple host evasion mechanisms to thwart NADPH oxidase-mediated killing during neutrophil infection. Infect Immun 72:4772–4783 (PMID:15271939)CrossRefPubMedPubMedCentralGoogle Scholar
  15. Caturegli P, Asanovich KM, Walls JJ, Bakken JS, Madigan JE, Popov VL, Dumler JS (2000) ankA: an Ehrlichia phagocytophila group gene encoding a cytoplasmic protein antigen with ankyrin repeats. Infect Immun 68:5277–5283 (PMID:10948155)CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen SM, Dumler JS, Bakken JS, Walker DH (1994) Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J Clin Microbiol 32:589–595 (PMID:8195363)Google Scholar
  17. Cheng Z, Wang X, Rikihisa Y (2008) Regulation of type IV secretion apparatus genes during Ehrlichia chaffeensis intracellular development by a previously unidentified protein. J Bacteriol 190:2096–2105 (PMID:18192398)CrossRefPubMedPubMedCentralGoogle Scholar
  18. Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179:3085–3094 (PMID:9150199)CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dawson JE, Anderson BE, Fishbein DB, Sanchez JL, Goldsmith CS, Wilson KH, Duntley CW (1991) Isolation and characterization of an Ehrlichia sp. from a patient diagnosed with human ehrlichiosis. J Clin Microbiol 29:2741–2745 (PMID:1757543)Google Scholar
  20. DeLeo FR (2004) Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis 9:399–413 (PMID:15192322)CrossRefPubMedGoogle Scholar
  21. Deretic V (2012) Autophagy: an emerging immunological paradigm. J Immunol 189:15–20. http://dx.doi.org/10.4049/jimmunol.1102108 (PMID:22723639)CrossRefPubMedGoogle Scholar
  22. Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5:527–549. http://dx.doi.org/S1931-3128(09)00183-8 (PMID:19527881) ([pii] 10.1016/j.chom.2009.05.016)CrossRefGoogle Scholar
  23. Dou Z, Pan JA, Dbouk HA, Ballou LM, Deleon JL, Fan Y et al (2013) Class IA PI3K p110beta subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Mol Cell 50:29–42. http://dx.doi.org/10.1016/j.molcel.2013.01.022 (PMID:23434372)CrossRefPubMedPubMedCentralGoogle Scholar
  24. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042 (PMID:11287973)CrossRefPubMedGoogle Scholar
  25. Dumler JS, Sinclair SH, Pappas-Brown V, Shetty AC (2016) Genome-wide Anaplasma phagocytophilum AnkA-DNA interactions are enriched in intergenic regions and gene promoters and correlate with infection-induced differential gene expression. Front Cell Infect Microbiol 6:97. http://dx.doi.org/10.3389/fcimb.2016.00097 (PMID:27703927)
  26. Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen J et al (2006) Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2:e21 (PMID:16482227)CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dunphy PS, Luo T, McBride JW (2013) Ehrlichia moonlighting effectors and interkingdom interactions with the mononuclear phagocyte. Microbes Infect 15:1005–1016. http://dx.doi.org/10.1016/j.micinf.2013.09.011 (PMID:24141087)CrossRefPubMedGoogle Scholar
  28. Dunphy PS, Luo T, McBride JW (2014) Ehrlichia chaffeensis exploits host SUMOylation pathways to mediate effector-host interactions and promote intracellular survival. Infect Immun 82:4154–4168. http://dx.doi.org/10.1128/IAI.01984-14 (PMID:25047847)CrossRefPubMedPubMedCentralGoogle Scholar
  29. Felek S, Huang H, Rikihisa Y (2003) Sequence and expression analysis of virB9 of the type IV secretion system of Ehrlichia canis strains in ticks, dogs, and cultured cells. Infect Immun 71:6063–6067 (PMID:14500531)CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fujita N, Morita E, Itoh T, Tanaka A, Nakaoka M, Osada Y et al (2013) Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J Cell Biol 203:115–128. http://dx.doi.org/10.1083/jcb.201304188 (PMID:24100292)CrossRefPubMedPubMedCentralGoogle Scholar
  31. Garcia-Garcia JC, Rennoll-Bankert KE, Pelly S, Milstone AM, Dumler JS (2009) Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infect Immun 77:2385–2391. http://dx.doi.org/IAI.00023-09 (PMID:19307214) ([pii] 10.1128/IAI.00023-09)CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ge Y, Rikihisa Y (2006) Anaplasma phagocytophilum delays spontaneous human neutrophil apoptosis by modulation of multiple apoptotic pathways. Cell Microbiol 8:1406–1416 (PMID:16922860)CrossRefPubMedGoogle Scholar
  33. Ge Y, Rikihisa Y (2007a) Identification of novel surface proteins of Anaplasma phagocytophilum by affinity purification and proteomics. J Bacteriol 189:7819–7828 (PMID:17766422)CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ge Y, Rikihisa Y (2007b) Surface-exposed proteins of Ehrlichia chaffeensis. Infect Immun 75:3833–3841. http://dx.doi.org/IAI.00188-07 (PMID:17517859) ([pii] 10.1128/iai.00188-07)CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ge Y, Yoshiie K, Kuribayashi F, Lin M, Rikihisa Y (2005) Anaplasma phagocytophilum inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance of mitochondrial membrane potential and prevention of caspase 3 activation. Cell Microbiol 7:29–38 (PMID:15617521)CrossRefGoogle Scholar
  36. Gillespie JJ, Ammerman NC, Dreher-Lesnick SM, Rahman MS, Worley MJ, Setubal JC et al (2009) An anomalous type IV secretion system in Rickettsia is evolutionarily conserved. PloS One 4:e4833. http://dx.doi.org/10.1371/journal.pone.0004833 (PMID:19279686)CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gillespie JJ, Brayton KA, Williams KP, Diaz MA, Brown WC, Azad AF. Sobral BW (2010) Phylogenomics reveals a diverse Rickettsiales type IV secretion system. Infect Immun 78:1809–1823. http://dx.doi.org/IAI.01384-09 (PMID:20176788) ([pii] 10.1128/iai.01384-09)CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gillespie JJ, Phan IQ, Scheib H, Subramanian S, Edwards TE, Lehman SS et al (2015) Structural insight into how bacteria prevent interference between multiple divergent type IV secretion systems. mBio 6:e01867–01815. http://dx.doi.org/10.1128/mBio.01867-15 (PMID:26646013)CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gillespie JJ, Phan IQ, Driscoll TP, Guillotte ML, Lehman SS, Rennoll-Bankert KE et al (2016) The Rickettsia type IV secretion system: unrealized complexity mired by gene family expansion. Pathog Dis 74. http://dx.doi.org/10.1093/femspd/ftw058 (PMID:27307105)
  40. Goodman JL, Nelson C, Vitale B, Madigan JE, Dumler JS, Kurtti TJ, Munderloh UG (1996) Direct cultivation of the causative agent of human granulocytic ehrlichiosis. N Engl J Med 334:209–215 (PMID:8531996)CrossRefPubMedGoogle Scholar
  41. Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spectr 4. http://dx.doi.org/10.1128/microbiolspec.VMBF-0012-2015 (PMID:26999395)
  42. Grohmann E, Christie PJ, Waksman G, Backert S (2018) Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 107:455–471.  https://doi.org/10.1111/mmi.13896CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766 (PMID:15607973)CrossRefPubMedGoogle Scholar
  44. Holley AK, Dhar SK, Xu Y, St Clair DK (2012) Manganese superoxide dismutase: beyond life and death. Amino Acids 42:139–158. http://dx.doi.org/10.1007/s00726-010-0600-9 (PMID:20454814)CrossRefPubMedPubMedCentralGoogle Scholar
  45. Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C (2010) ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterol 139:1630–1641, e1631–1632. http://dx.doi.org/10.1053/j.gastro.2010.07.006 (PMID:20637199)CrossRefPubMedCentralGoogle Scholar
  46. Huang B, Hubber A, McDonough JA, Roy CR, Scidmore MA, Carlyon JA (2010a) The Anaplasma phagocytophilum-occupied vacuole selectively recruits Rab-GTPases that are predominantly associated with recycling endosomes. Cell Microbiol 12:1292–1307. http://dx.doi.org/CMI1468 (PMID:20345488) ([pii] 10.1111/j.1462-5822.2010.01468.x)CrossRefPubMedPubMedCentralGoogle Scholar
  47. Huang B, Troese MJ, Howe D, Ye S, Sims JT, Heinzen RA et al (2010b) Anaplasma phagocytophilum APH_0032 is expressed late during infection and localizes to the pathogen-occupied vacuolar membrane. Microb Pathog 49:273–284. http://dx.doi.org/S0882-4010(10)00111-7 (PMID:20600793) ([pii] 10.1016/j.micpath.2010.06.009)CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283. http://dx.doi.org/10.1146/annurev-cellbio-100109-104034 (PMID:20929312)CrossRefPubMedGoogle Scholar
  49. IJdo J, Carlson AC, Kennedy EL (2007) Anaplasma phagocytophilum AnkA is tyrosine-phosphorylated at EPIYA motifs and recruits SHP-1 during early infection. Cell Microbiol 9:1284–1296 (PMID:17250594)CrossRefPubMedGoogle Scholar
  50. Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372. http://dx.doi.org/E08-01-0080 (PMID:18843052) ([pii] 10.1091/mbc.e08-01-0080)CrossRefPubMedPubMedCentralGoogle Scholar
  51. Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M, Hassan H et al (2013) A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol 43:1333–1344. http://dx.doi.org/10.1002/eji.201242835 (PMID:23420491)CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kuriakose JA, Miyashiro S, Luo T, Zhu B, McBride JW (2011) Ehrlichia chaffeensis transcriptome in mammalian and arthropod hosts reveals differential gene expression and post transcriptional regulation. PloS One 6:e24136. http://dx.doi.org/10.1371/journal.pone.0024136 (PMID:21915290) (PONE-D-11-09798 [pii])CrossRefPubMedPubMedCentralGoogle Scholar
  53. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nat 469:323–335. http://dx.doi.org/nature09782 (PMID:21248839) ([pii] 10.1038/nature09782)
  54. Ligr M, Madeo F, Frohlich E, Hilt W, Frohlich KU, Wolf DH (1998) Mammalian bax triggers apoptotic changes in yeast. FEBS Lett 438:61–65. http://dx.doi.org/S0014-5793(98)01227-7 (PMID:9821959) [pii]CrossRefPubMedGoogle Scholar
  55. Lin M, Rikihisa Y (2003a) Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect Immun 71:5324–5331 (PMID:12933880)CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lin M, Rikihisa Y (2003b) Obligatory intracellular parasitism by Ehrlichia chaffeensis and Anaplasma phagocytophilum involves caveolae and glycosylphosphatidylinositol-anchored proteins. Cell Microbiol 5:809–820CrossRefPubMedGoogle Scholar
  57. Lin M, Rikihisa Y (2007) Degradation of p22phox and inhibition of superoxide generation by Ehrlichia chaffeensis in human monocytes. Cell Microbiol 9:861–874 (PMID:17087735)CrossRefPubMedGoogle Scholar
  58. Lin M, Rikihisa Y (2015) Infection and release of obligatory intracellular pathogen Anaplasma require regulation of actin cytoskeleton dynamics by type IV secretion effector AnkA. In: Annual meeting of american society for rickettsiology, Olympic valley, CA, American Society for Rickettsiology, pp Abstract #72Google Scholar
  59. Lin M, Zhu MX, Rikihisa Y (2002) Rapid activation of protein tyrosine kinase and phospholipase C-g2 and increase in cytosolic free calcium are required by Ehrlichia chaffeensis for internalization and growth in THP-1 cells. Infect Immun 70:889–898 (PMID:11796624)CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lin M, den Dulk-Ras A, Hooykaas PJ, Rikihisa Y (2007) Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell Microbiol 9, 2644–2657 (PMID:17587335)CrossRefPubMedGoogle Scholar
  61. Lin M, Daugherty SC, Parankush S, Kumar N, Cheng Z, Xiong Q et al (2013) Sequencing and comparison of genomes of Ehrlichia strains and transcriptome profiles in mammalian host and tick cells. In: ASM 113th general meeting, American Society for Microbiology, Denver, COGoogle Scholar
  62. Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y (2011) Global proteomic analysis of two tick-borne emerging zoonotic agents: Anaplasma phagocytophilum and Ehrlichia chaffeensis. Front Microbiol 2:24.  https://doi.org/10.3389/fmicb.2011.00024CrossRefPubMedPubMedCentralGoogle Scholar
  63. Lin M, Liu H, Xiong Q, Niu H, Cheng Z, Yamamoto A, Rikihisa Y (2016) Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase. Autophagy 12:2145–2166. http://dx.doi.org/10.1080/15548627.2016.1217369 (PMID:27541856)CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lind J, Backert S, Hoffmann R, Eichler J, Yamaoka Y, Perez-Perez GI, Torres J, Sticht H, Tegtmeyer N (2016) Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains. BMC Microbiol 16(1):201.  https://doi.org/10.1186/s12866-016-0820-6CrossRefPubMedPubMedCentralGoogle Scholar
  65. Liu H (2013) Roles of type IV secretion effector ECH0825 in Ehrlichia chaffeensis infection. In: Veterinary biosciences, The Ohio State University, Columbus, OH, p 154Google Scholar
  66. Liu Y, Zhang Z, Jiang Y, Zhang L, Popov VL, Zhang J et al (2011) Obligate intracellular bacterium Ehrlichia inhibiting mitochondrial activity. Microbes Infect 13:232–238. http://dx.doi.org/S1286-4579(10)00280-7 (PMID:21070861) ([pii] 10.1016/j.micinf.2010.https://doi.org/10.021)CrossRefPubMedGoogle Scholar
  67. Liu H, Bao W, Lin M, Niu H, Rikihisa Y (2012) Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD. Cell Microbiol 14:1037–1050. http://dx.doi.org/10.1111/j.1462-5822.2012.01775.x (PMID:22348527)CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lockwood S, Voth DE, Brayton KA, Beare PA, Brown WC, Heinzen RA, Broschat SL (2011) Identification of Anaplasma marginale type IV secretion system effector proteins. PloS One 6:e27724. http://dx.doi.org/10.1371/journal.pone.0027724 (PMID:22140462) PONE-D-11–14673 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  69. Maeda K, Markowitz N, Hawley RC, Ristic M, Cox D, McDade JE (1987) Human infection with Ehrlichia canis, a leukocytic rickettsia. N Engl J Med 316:853–856 (PMID:3029590)CrossRefPubMedGoogle Scholar
  70. Maruoka M, Suzuki J, Kawata S, Yoshida K, Hirao N, Sato S, et al (2005) Identification of B cell adaptor for PI3-kinase (BCAP) as an Abl interactor 1-regulated substrate of Abl kinases. FEBS Lett 579:2986–2990 (PMID:15893754)CrossRefPubMedGoogle Scholar
  71. Miura K, Rikihisa Y (2009) Liver transcriptome profiles associated with strain-specific Ehrlichia chaffeensis-induced hepatitis in SCID mice. Infect Immun 77:245–254 (PMID:19001077)CrossRefPubMedPubMedCentralGoogle Scholar
  72. Mohan Kumar D, Yamaguchi M, Miura K, Lin M, Los M, Coy JF, Rikihisa Y (2013) Ehrlichia chaffeensis uses its surface protein EtpE to bind GPI-anchored protein DNase X and trigger entry into mammalian cells. PLoS Pathog 9:e1003666. http://dx.doi.org/10.1371/journal.ppat.1003666 (PMID:24098122)CrossRefPubMedPubMedCentralGoogle Scholar
  73. Morse K, Norimine J, Palmer GH, Sutten EL, Baszler TV, Brown WC (2012) Association and evidence for linked recognition of type IV secretion system proteins VirB9-1, VirB9-2, and VirB10 in Anaplasma marginale. Infect Immun 80:215–227. http://dx.doi.org/10.1128/IAI.05798-11 (PMID:22038917)CrossRefPubMedGoogle Scholar
  74. Mott J, Rikihisa Y (2000) Human granulocytic ehrlichiosis agent inhibits superoxide anion generation by human neutrophils. Infect Immun 68:6697–6703 (PMID:11083784)CrossRefPubMedPubMedCentralGoogle Scholar
  75. Mott J, Barnewall RE, Rikihisa Y (1999) Human granulocytic ehrlichiosis agent and Ehrlichia chaffeensis reside in different cytoplasmic compartments in HL-60 cells. Infect Immun 67:1368–1378 (PMID:10024584)Google Scholar
  76. Mott J, Rikihisa Y, Tsunawaki S (2002) Effects of Anaplasma phagocytophila on NADPH oxidase components in human neutrophils and HL-60 cells. Infect Immun 70:1359–1366 (PMID:11854221)CrossRefPubMedPubMedCentralGoogle Scholar
  77. Mueller D, Tegtmeyer N, Brandt S, Yamaoka Y, De Poire E, Sgouras D, Wessler S, Torres J, Smolka A, Backert S (2012) c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J Clin Invest 122(4):1553–1566.  https://doi.org/10.1172/JCI61143CrossRefPubMedPubMedCentralGoogle Scholar
  78. Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Sci 295:679–682 (PMID:11809974)CrossRefPubMedGoogle Scholar
  79. Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W et al (2003) Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112:859–871. http://dx.doi.org/S0092867403001946 (PMID:12654251) [pii]CrossRefPubMedGoogle Scholar
  80. Nelson CM, Herron MJ, Felsheim RF, Schloeder BR, Grindle SM, Chavez AO et al (2008) Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis. BMC Genomics 9:364 (PMID:18671858)CrossRefPubMedPubMedCentralGoogle Scholar
  81. Niu H, Rikihisa Y (2013) Ats-1: a novel bacterial molecule that links autophagy to bacterial nutrition. Autophagy 9:787–788. http://dx.doi.org/10.4161/auto.23693 (PMID:23388398)CrossRefPubMedPubMedCentralGoogle Scholar
  82. Niu H, Rikihisa Y (2016) Intracellular bacterium Anaplasma phagocytophilum induces autophagy by secreting substrate Ats-1 that neutralizes the Beclin 1-ATG14L autophagy initiation pathway. In: Hayat MA (ed) Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging. Elsevier Publishing Company, Amsterdam, The Netherlands, pp 308–314CrossRefGoogle Scholar
  83. Niu H, Rikihisa Y, Yamaguchi M, Ohashi N (2006) Differential expression of VirB9 and VirB6 during the life cycle of Anaplasma phagocytophilum in human leucocytes is associated with differential binding and avoidance of lysosome pathway. Cell Microbiol 8:523–534 (PMID:16469062)CrossRefPubMedGoogle Scholar
  84. Niu H, Yamaguchi M, Rikihisa Y (2008) Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell Microbiol 10:593–605 (PMID:17979984)CrossRefPubMedGoogle Scholar
  85. Niu H, Kozjak-Pavlovic V, Rudel T, Rikihisa Y (2010) Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog 6:e1000774. http://dx.doi.org/10.1371/journal.ppat.1000774 (PMID:20174550)CrossRefPubMedPubMedCentralGoogle Scholar
  86. Niu H, Xiong Q, Yamamoto A, Hayashi-Nishino M, Rikihisa Y (2012) Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc Natl Acad Sci U S A 109:20800–20807. http://dx.doi.org/10.1073/pnas.1218674109 (PMID:23197835)CrossRefGoogle Scholar
  87. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A 102:14238–14243. http://dx.doi.org/0506925102 (PMID:16176982) ([pii] 10.1073/pnas.0506925102)CrossRefGoogle Scholar
  88. Noroy C, Meyer DF (2017) Corrigendum: comparative genomics of the zoonotic pathogen Ehrlichia chaffeensis reveals candidate type IV effectors and putative host cell targets. Front Cell Infect Microbiol 7:120. http://dx.doi.org/10.3389/fcimb.2017.00120 (PMID:28382279)
  89. Ohashi N, Zhi N, Lin Q, Rikihisa Y (2002) Characterization and transcriptional analysis of gene clusters for a type IV secretion machinery in human granulocytic and monocytic ehrlichiosis agents. Infect Immun 70:2128–2138 (PMID:11895979)CrossRefPubMedPubMedCentralGoogle Scholar
  90. Paddock CD, Childs JE (2003) Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin Microbiol Rev 16:37–64CrossRefPubMedPubMedCentralGoogle Scholar
  91. Paddock CD, Yabsley MJ (2007) Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum-associated zoonoses in the United States. Curr Top Microbiol Immunol 315:289–324 (PMID:17848069)Google Scholar
  92. Papanikou E, Karamanou S, Economou A (2007) Bacterial protein secretion through the translocase nanomachine. Nat Rev Microbiol 5:839–851. http://dx.doi.org/nrmicro1771 (PMID:17938627) ([pii] 10.1038/nrmicro1771)CrossRefPubMedGoogle Scholar
  93. Park J, Kim KJ, Choi KS, Grab DJ, Dumler JS (2004) Anaplasma phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins. Cell Microbiol 6:743–751 (PMID:15236641)CrossRefPubMedGoogle Scholar
  94. Pluk H, Dorey K, Superti-Furga G (2002) Autoinhibition of c-Abl. Cell 108:247–259. http://dx.doi.org/S0092867402006232 (PMID:11832214) [pii]CrossRefPubMedGoogle Scholar
  95. Poole AW, Jones ML (2005) A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal 17:1323–1332. http://dx.doi.org/S0898-6568(05)00123-3 (PMID:16084691) ([pii] 10.1016/j.cellsig.2005.05.016)
  96. Raspe M, Gillis J, Krol H, Krom S, Bosch K, van Veen H, Reits E (2009) Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity. J Cell Sci 122:3262–3271. http://dx.doi.org/10.1242/jcs.045567 (PMID:19690053)CrossRefPubMedGoogle Scholar
  97. Ravikumar B, Imarisio S, Sarkar S, O’Kane CJ, Rubinsztein DC (2008) Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121:1649–1660. http://dx.doi.org/10.1242/jcs.025726 (PMID:18430781)CrossRefPubMedPubMedCentralGoogle Scholar
  98. Rennoll-Bankert KE, Rahman MS, Gillespie JJ, Guillotte ML, Kaur SJ, Lehman SS et al (2015) Which way in? The RalF Arf-GEF orchestrates Rickettsia host cell invasion. PLoS Pathog 11:e1005115. http://dx.doi.org/10.1371/journal.ppat.1005115 (PMID:26291822)CrossRefPubMedPubMedCentralGoogle Scholar
  99. Rikihisa Y (1991) The tribe Ehrlichieae and ehrlichial diseases. Clin Microbiol Rev 4:286–308 (PMID:1889044)CrossRefPubMedPubMedCentralGoogle Scholar
  100. Rikihisa Y (2010) Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 8:328–339. http://dx.doi.org/nrmicro2318 (PMID:20372158) ([pii] 10.1038/nrmicro2318)CrossRefPubMedGoogle Scholar
  101. Rikihisa Y (2011) Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev 24:469–489. http://dx.doi.org/24/3/469 (PMID:21734244) ([pii] 10.1128/cmr.00064-10)CrossRefPubMedPubMedCentralGoogle Scholar
  102. Rikihisa Y (2015) Molecular pathogenesis of Ehrlichia chaffeensis infection. Annu Rev Microbiol 69:283–304. http://dx.doi.org/10.1146/annurev-micro-091014-104411 (PMID:26488275)CrossRefPubMedGoogle Scholar
  103. Rikihisa Y (2017) Subversion of RAB5-regulated autophagy by the intracellular pathogen Ehrlichia chaffeensis. Small GTPases 0. http://dx.doi.org/10.1080/21541248.2017.1332506 (PMID:28650718)
  104. Rikihisa Y, Lin M (2010) Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins. Curr Opin Microbiol 13:59–66. http://dx.doi.org/S1369-5274(09)00187-8 (PMID:20053580) ([pii] 10.1016/j.mib.2009.12.008)CrossRefPubMedPubMedCentralGoogle Scholar
  105. Rikihisa Y, Lin M, Niu H, Cheng Z (2009) Type IV secretion system of Anaplasma phagocytophilum and Ehrlichia chaffeensis. Ann NY Acad Sci 1166:106–111. http://dx.doi.org/NYAS04527 (PMID:19538269) ([pii] 10.1111/j.1749-6632.2009.04527.x)CrossRefPubMedGoogle Scholar
  106. Rikihisa Y, Lin M, Niu H (2010) Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum. Cell Microbiol 12:1213–1221. http://dx.doi.org/CMI1500 (PMID:20670295) ([pii] 10.1111/j.1462-5822.2010.01500.x)
  107. Seidman D, Hebert KS, Truchan HK, Miller DP, Tegels BK, Marconi RT, Carlyon JA (2015) Essential domains of Anaplasma phagocytophilum invasins utilized to infect mammalian host cells. PLoS Pathog 11:e1004669. http://dx.doi.org/10.1371/journal.ppat.1004669 (PMID:25658707)CrossRefPubMedPubMedCentralGoogle Scholar
  108. Sharma P, Teymournejad O, Rikihisa Y (2017) Peptide nucleic acid knockdown and intra-host cell complementation of Ehrlichia type IV secretion system effector. Front Cell Infect Microbiol 7:228. http://dx.doi.org/10.3389/fcimb.2017.00228 (PMID:28638803)
  109. Shaw DK, McClure EE, Wang X, Pedra JHF (2016) Deviant behavior: tick-borne pathogens and inflammasome signaling. Vet Sci 3:27. http://dx.doi.org/10.3390/vetsci3040027CrossRefPubMedCentralGoogle Scholar
  110. Sinclair SH, Garcia-Garcia JC, Dumler JS (2015) Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei. Front Microbiol 6:55. http://dx.doi.org/10.3389/fmicb.2015.00055 (PMID:25705208)
  111. Sneve ML, Overbye A, Fengsrud M, Seglen PO (2005) Comigration of two autophagosome-associated dehydrogenases on two-dimensional polyacrylamide gels. Autophagy 1:157–162. http://dx.doi.org/2037 (PMID:16874067) [pii]CrossRefPubMedGoogle Scholar
  112. Storey JR, Doros-Richert LA, Gingrich-Baker C, Munroe K, Mather TN, Coughlin RT et al (1998) Molecular cloning and sequencing of three granulocytic Ehrlichia genes encoding high-molecular-weight immunoreactive proteins. Infect Immun 66:1356–1363 (PMID:9529053)Google Scholar
  113. Su WC, Chao TC, Huang YL, Weng SC, Jeng KS, Lai MM (2011) Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol 85:10561–10571. http://dx.doi.org/10.1128/JVI.00173-11 (PMID:21835792)CrossRefPubMedPubMedCentralGoogle Scholar
  114. Sutten EL, Norimine J, Beare PA, Heinzen, RA, Lopez JE, Morse K et al (2010) Anaplasma marginale type IV secretion system proteins VirB2, VirB7, VirB11, and VirD4 are immunogenic components of a protective bacterial membrane vaccine. Infect Immun 78:1314–1325. http://dx.doi.org/IAI.01207-09 (PMID:20065028) ([pii] 10.1128/iai.01207-09)CrossRefPubMedPubMedCentralGoogle Scholar
  115. Tani K, Sato S, Sukezane T, Kojima H, Hirose H, Hanafusa H, Shishido T (2003) Abl interactor 1 promotes tyrosine 296 phosphorylation of mammalian enabled (Mena) by c-Abl kinase. J Biol Chem 278:21685–21692 (PMID:12672821)CrossRefPubMedGoogle Scholar
  116. Teymournejad O, Lin M, Rikihisa Y (2017) Ehrlichia chaffeensis and its invasin EtpE block reactive oxygen species generation by macrophages in a DNase X-dependent manner. mBio 8: e01551–17. http://dx.dpi.org/10.1128/mBio. (PMID:29162709)CrossRefPubMedPubMedCentralGoogle Scholar
  117. Truchan HK, Cockburn CL, May LJ, VieBrock L, Carlyon JA (2016) Anaplasma phagocytophilum-occupied vacuole interactions with the host cell cytoskeleton. Vet Sci 3:25.  https://doi.org/10.3390/vetsci3030025CrossRefPubMedCentralGoogle Scholar
  118. Vergunst AC, van Lier MCM, den Dulk-Ras A, Grosse Stuve TA, Ouwehand A, Hooykaas PJJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A 102:832–837.  https://doi.org/10.1073/pnas.0406241102CrossRefPubMedPubMedCentralGoogle Scholar
  119. Wakeel A, den Dulk-Ras A, Hooykaas PJ, McBride JW (2011) Ehrlichia chaffeensis tandem repeat proteins and Ank200 are type 1 secretion system substrates related to the repeats-in-toxin exoprotein family. Front Cell Infect Microbiol 1:22. http://dx.doi.org/10.3389/fcimb.2011.00022 (PMID:22919588)
  120. Wang X, Kikuchi T, Rikihisa Y (2007) Proteomic identification of a novel Anaplasma phagocytophilum DNA binding protein that regulates a putative transcription factor. J bacteriol 189:4880–4886 (PMID:17483233)CrossRefPubMedPubMedCentralGoogle Scholar
  121. Webster P, Ijdo JW, Chicoine LM, Fikrig E (1998) The agent of Human Granulocytic Ehrlichiosis resides in an endosomal compartment. J Clin Invest 101:1932–1941 (PMID:9576758).CrossRefPubMedPubMedCentralGoogle Scholar
  122. Xiong Q, Bao W, Ge Y, Rikihisa Y (2008) Ehrlichia ewingii infection delays spontaneous neutrophil apoptosis through stabilization of mitochondria. J Infect Dis 197:1110–1118 (PMID:18462160)CrossRefPubMedGoogle Scholar
  123. Yoshiie K, Kim HY, Mott J, Rikihisa Y (2000) Intracellular infection by the human granulocytic ehrlichiosis agent inhibits human neutrophil apoptosis. Infect Immun 68:1125–1133 (PMID:10678916)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Veterinary BiosciencesCollege of Veterinary Medicine, The Ohio State UniversityColumbusUSA

Personalised recommendations