Advertisement

Type IV Effector Secretion and Subversion of Host Functions by Bartonella and Brucella Species

  • Christoph Dehio
  • Renée M. Tsolis
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 413)

Abstract

Bartonella and Brucella species comprise closely related genera of the order Rhizobiales within the class α-proteobacteria. Both groups of bacteria are mammalian pathogens with a facultative intracellular lifestyle and are capable of causing chronic infections, but members of each genus have evolved broadly different infection and transmission strategies. While Brucella spp. transmit in general via the reproductive tract in their natural hosts, the Bartonella spp. have evolved to transmit via arthropod vectors. However, a shared feature of both groups of pathogens is their reliance on type IV secretion systems (T4SSs) to interact with cells in their mammalian hosts. The genomes of Bartonella spp. encode three types of T4SS, Trw, Vbh/TraG, and VirB/VirD4, whereas those of Brucella spp. uniformly contain a single T4SS of the VirB type. The VirB systems of Bartonella and Brucella are associated with distinct groups of effector proteins that collectively mediate interactions with host cells. This chapter discusses recent findings on the role of T4SS in the biology of Bartonella spp. and Brucella spp. with emphasis on effector repertoires, on recent advances in our understanding of their evolution, how individual effectors function at the molecular level, and on the consequences of these interactions for cellular and immune responses in the host.

Keywords

Conjugation systems Bacterial secretion systems Effector proteins Bacterial evolution Post-translational modification FIC domain Zoonoses Vector-borne disease Disease transmission Innate immunity Endoplasmic reticulum Placenta 

References

  1. Arriola Benitez PC, Rey Serantes D, Herrmann CK, Pesce Viglietti AI, Vanzulli S, Giambartolomei GH, Comerci DJ, Delpino MV (2015) The effector protein BPE005 from Brucella abortus induces collagen deposition and matrix metalloproteinase 9 downmodulation via transforming growth factor beta1 in hepatic stellate cells. Infect Immun 84(2):598–606.  https://doi.org/10.1128/IAI.01227-15CrossRefPubMedGoogle Scholar
  2. Backert S, Selbach M (2005) Tyrosine-phosphorylated bacterial effector proteins: the enemies within. Trends Microbiol 13(10):476–484CrossRefPubMedGoogle Scholar
  3. Byndloss MX, Tsolis RM (2016) Chronic bacterial pathogens: mechanisms of persistence. Microbiol Spectr 4(2).  https://doi.org/10.1128/microbiolspec.vmbf-0020-2015
  4. Carle A, Hoppner C, Ahmed Aly K, Yuan Q, den Dulk-Ras A, Vergunst A, O’Callaghan D, Baron C (2006) The Brucella suis type IV secretion system assembles in the cell envelope of the heterologous host Agrobacterium tumefaciens and increases IncQ plasmid pLS1 recipient competence. Infect Immun 74(1):108–117.  https://doi.org/10.1128/IAI.74.1.108-117.2006CrossRefPubMedPubMedCentralGoogle Scholar
  5. Celli J (2015) The changing nature of the Brucella-containing vacuole. Cell Microbiol 17(7):951–958.  https://doi.org/10.1111/cmi.12452CrossRefPubMedPubMedCentralGoogle Scholar
  6. Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP (2003) Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 198(4):545–556.  https://doi.org/10.1084/jem.20030088CrossRefPubMedPubMedCentralGoogle Scholar
  7. Celli J, Tsolis RM (2015) Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? Nat Rev 13(2):71–82.  https://doi.org/10.1038/nrmicro3393CrossRefGoogle Scholar
  8. Chaudhary A, Ganguly K, Cabantous S, Waldo GS, Micheva-Viteva SN, Nag K, Hlavacek WS, Tung CS (2012) The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochem Biophys Res Commun 417(1):299–304.  https://doi.org/10.1016/j.bbrc.2011.11.104CrossRefPubMedGoogle Scholar
  9. Chomel BB, Boulouis HJ, Breitschwerdt EB, Kasten RW, Vayssier-Taussat M, Birtles RJ, Koehler JE, Dehio C (2009) Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors. Vet Res 40(2):29.  https://doi.org/10.1051/vetres/2009011CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, Stappert D, Wantia N, Rodriguez N, Wagner H, Svanborg C, Miethke T (2008) Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 14(4):399–406.  https://doi.org/10.1038/nm1734CrossRefPubMedGoogle Scholar
  11. Comerci DJ, Martinez-Lorenzo MJ, Sieira R, Gorvel JP, Ugalde RA (2001) Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell Microbiol 3(3):159–168CrossRefPubMedGoogle Scholar
  12. Costello M, Enzler MJ (2016) IMAGES IN CLINICAL MEDICINE. Chronic Splenic Brucellosis. N Engl J Med 374(24):2377.  https://doi.org/10.1056/NEJMicm1511012CrossRefPubMedGoogle Scholar
  13. de Barsy M, Jamet A, Filopon D, Nicolas C, Laloux G, Rual JF, Muller A, Twizere JC, Nkengfac B, Vandenhaute J, Hill DE, Salcedo SP, Gorvel JP, Letesson JJ, De Bolle X (2011) Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol 13(7):1044–1058.  https://doi.org/10.1111/j.1462-5822.2011.01601.xCrossRefPubMedGoogle Scholar
  14. de Jong MF, Starr T, Winter MG, den Hartigh AB, Child R, Knodler LA, van Dijl JM, Celli J, Tsolis RM (2013) Sensing of bacterial type IV secretion via the unfolded protein response. MBio 4(1):e00418–00412.  https://doi.org/10.1128/mBio.00418-12CrossRefPubMedPubMedCentralGoogle Scholar
  15. de Jong MF, Sun YH, den Hartigh AB, van Dijl JM, Tsolis RM (2008) Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol 70(6):1378–1396.  https://doi.org/10.1111/j.1365-2958.2008.06487.xCrossRefPubMedPubMedCentralGoogle Scholar
  16. Dehio C (2005) Bartonella-host cell interactions and vascular tumour formation. Nat Rev 3(8):621–631Google Scholar
  17. Dehio C (2008) Infection-associated type IV secretion systems of Bartonella and their diverse roles in host cell interaction. Cell Microbiol 10(8):1591–1598.  https://doi.org/10.1111/j.1462-5822.2008.01171.xCrossRefPubMedPubMedCentralGoogle Scholar
  18. Dehio C, Meyer M, Berger J, Schwarz H, Lanz C (1997) Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome. J Cell Sci 110(Pt 18):2141–2154Google Scholar
  19. Del Giudice MG, Dohmer PH, Spera JM, Laporte FT, Marchesini MI, Czibener C, Ugalde JE (2016) VirJ is a Brucella virulence factor involved in the secretion of type IV secreted substrates. J Biol Chem 291(23):12383–12393.  https://doi.org/10.1074/jbc.M116.730994CrossRefPubMedPubMedCentralGoogle Scholar
  20. Delrue RM, Martinez-Lorenzo M, Lestrate P, Danese I, Bielarz V, Mertens P, De Bolle X, Tibor A, Gorvel JP, Letesson JJ (2001) Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol 3(7):487–497CrossRefPubMedGoogle Scholar
  21. Deng HK, Le Rhun D, Le Naour E, Bonnet S, Vayssier-Taussat M (2012) Identification of Bartonella Trw host-specific receptor on erythrocytes. PLoS ONE 7(7):e41447.  https://doi.org/10.1371/journal.pone.0041447CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dohmer PH, Valguarnera E, Czibener C, Ugalde JE (2014) Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell Microbiol 16(3):396–410.  https://doi.org/10.1111/cmi.12224CrossRefPubMedPubMedCentralGoogle Scholar
  23. Eevers N, Van Hamme JD, Bottos EM, Weyens N, Vangronsveld J (2015) Draft genome sequence of Methylobacterium radiotolerans, a DDE-degrading and plant growth-promoting strain isolated from Cucurbita pepo. Genome Announcements 3(3).  https://doi.org/10.1128/genomea.00488-15PubMedPubMedCentralGoogle Scholar
  24. Eicher SC, Dehio C (2012) Bartonella entry mechanisms into mammalian host cells. Cell Microbiol 14(8):1166–1173.  https://doi.org/10.1111/j.1462-5822.2012.01806.xCrossRefPubMedPubMedCentralGoogle Scholar
  25. Engel P, Goepfert A, Stanger FV, Harms A, Schmidt A, Schirmer T, Dehio C (2012) Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature 482(7383):107–110.  https://doi.org/10.1038/nature10729CrossRefPubMedGoogle Scholar
  26. Engel P, Salzburger W, Liesch M, Chang CC, Maruyama S, Lanz C, Calteau A, Lajus A, Medigue C, Schuster SC, Dehio C (2011) Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella. PLoS Genet 7(2):e1001296.  https://doi.org/10.1371/journal.pgen.1001296CrossRefPubMedPubMedCentralGoogle Scholar
  27. Felix C, Kaplan Turkoz B, Ranaldi S, Koelblen T, Terradot L, O’Callaghan D, Vergunst AC (2014) The Brucella TIR domain containing proteins BtpA and BtpB have a structural WxxxE motif important for protection against microtubule depolymerisation. Cell Commun Signal 12:53.  https://doi.org/10.1186/s12964-014-0053-yCrossRefPubMedPubMedCentralGoogle Scholar
  28. Fugier E, Salcedo SP, de Chastellier C, Pophillat M, Muller A, Arce-Gorvel V, Fourquet P, Gorvel JP (2009) The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog 5(6):e1000487.  https://doi.org/10.1371/journal.ppat.1000487CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grohmann E, Christie PJ, Waksman G, Backert S (2018) Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol. 107:455–471.  https://doi.org/10.1111/mmi.13896CrossRefPubMedGoogle Scholar
  30. Hanot Mambres D, Machelart A, Vanderwinden JM, De Trez C, Ryffel B, Letesson JJ, Muraille E (2015) in situ characterization of splenic Brucella melitensis reservoir cells during the chronic phase of infection in susceptible mice. PLoS ONE 10(9):e0137835.  https://doi.org/10.1371/journal.pone.0137835CrossRefPubMedPubMedCentralGoogle Scholar
  31. Harms A, Dehio C (2012) Intruders below the radar: molecular pathogenesis of Bartonella spp. Clin Microbiol Rev 25(1):42–78.  https://doi.org/10.1128/CMR.05009-11CrossRefPubMedPubMedCentralGoogle Scholar
  32. Harms A, Segers FH, Quebatte M, Mistl C, Manfredi P, Korner J, Chomel BB, Kosoy M, Maruyama S, Engel P, Dehio C (2017) Evolutionary dynamics of pathoadaptation revealed by three independent acquisitions of the VirB/D4 type IV secretion system in Bartonella. Genome biology and evolution 9(3):761–776.  https://doi.org/10.1093/gbe/evx042CrossRefPubMedPubMedCentralGoogle Scholar
  33. Harms A, Stanger FV, Dehio C (2016) Biological diversity and molecular plasticity of FIC domain proteins. Annu Rev Microbiol 70:341–360.  https://doi.org/10.1146/annurev-micro-102215-095245CrossRefPubMedGoogle Scholar
  34. Harms A, Stanger FV, Scheu PD, de Jong IG, Goepfert A, Glatter T, Gerdes K, Schirmer T, Dehio C (2015) Adenylylation of gyrase and topo IV by FicT toxins disrupts bacterial DNA topology. Cell reports 12(9):1497–1507.  https://doi.org/10.1016/j.celrep.2015.07.056CrossRefPubMedGoogle Scholar
  35. Keestra-Gounder AM, Byndloss MX, Seyffert N, Young BM, Chavez-Arroyo A, Tsai AY, Cevallos SA, Winter MG, Pham OH, Tiffany CR, de Jong MF, Kerrinnes T, Ravindran R, Luciw PA, McSorley SJ, Baumler AJ, Tsolis RM (2016) NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532(7599):394–397.  https://doi.org/10.1038/nature17631CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kim S, Lee DS, Watanabe K, Furuoka H, Suzuki H, Watarai M (2005) Interferon-gamma promotes abortion due to Brucella infection in pregnant mice. BMC Microbiol 5:22.  https://doi.org/10.1186/1471-2180-5-22CrossRefPubMedPubMedCentralGoogle Scholar
  37. Koesling J, Aebischer T, Falch C, Schulein R, Dehio C (2001) Cutting edge: antibody-mediated cessation of hemotropic infection by the intraerythrocytic mouse pathogen Bartonella grahamii. J Immunol 167(1):11–14CrossRefPubMedGoogle Scholar
  38. Lifshitz Z, Burstein D, Peeri M, Zusman T, Schwartz K, Shuman HA, Pupko T, Segal G (2013) Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc Natl Acad Sci USA 110(8):E707–715.  https://doi.org/10.1073/pnas.1215278110CrossRefPubMedPubMedCentralGoogle Scholar
  39. Locht C, Coutte L, Mielcarek N (2011) The ins and outs of pertussis toxin. FEBS J 278(23):4668–4682.  https://doi.org/10.1111/j.1742-4658.2011.08237.xCrossRefPubMedPubMedCentralGoogle Scholar
  40. Marchesini MI, Herrmann CK, Salcedo SP, Gorvel JP, Comerci DJ (2011) In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system. Cell Microbiol 13(8):1261–1274.  https://doi.org/10.1111/j.1462-5822.2011.01618.xCrossRefPubMedPubMedCentralGoogle Scholar
  41. Marchesini MI, Morrone Seijo SM, Guaimas FF, Comerci DJ (2016) A T4SS effector targets host cell alpha-enolase contributing to Brucella abortus intracellular lifestyle. Front Cell Infect Microbiol 6:153.  https://doi.org/10.3389/fcimb.2016.00153CrossRefPubMedPubMedCentralGoogle Scholar
  42. Miller CN, Smith EP, Cundiff JA, Knodler LA, Blackburn JB, Lupashin V, Celli J (2017) A Brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe 22(3):317–329.e7.  https://doi.org/10.1016/j.chom.2017.07.017CrossRefGoogle Scholar
  43. Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE, Roy CR (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477(7362):103–106.  https://doi.org/10.1038/nature10335CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mullins KE, Hang J, Jiang J, Leguia M, Kasper MR, Ventosilla P, Maguina C, Jarman RG, Blazes D, Richards AL (2015) Description of Bartonella ancashensis sp. nov., isolated from the blood of two patients with verruga peruana. Int J Syst Evol Microbiol 65(10):3339–3343.  https://doi.org/10.1099/ijsem.0.000416CrossRefPubMedGoogle Scholar
  45. Myeni S, Child R, Ng TW, Kupko JJ 3rd, Wehrly TD, Porcella SF, Knodler LA, Celli J (2013) Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog 9(8):e1003556.  https://doi.org/10.1371/journal.ppat.1003556CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nagai H, Cambronne ED, Kagan JC, Amor JC, Kahn RA, Roy CR (2005) A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci USA 102(3):826–831.  https://doi.org/10.1073/pnas.0406239101CrossRefPubMedGoogle Scholar
  47. Nystedt B, Frank AC, Thollesson M, Andersson SG (2008) Diversifying selection and concerted evolution of a type IV secretion system in Bartonella. Mol Biol Evol 25(2):287–300.  https://doi.org/10.1093/molbev/msm252CrossRefPubMedGoogle Scholar
  48. O’Callaghan D, Cazevieille C, Allardet-Servent A, Boschiroli ML, Bourg G, Foulongne V, Frutos P, Kulakov Y, Ramuz M (1999) A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33(6):1210–1220CrossRefGoogle Scholar
  49. Okujava R, Guye P, Lu YY, Mistl C, Polus F, Vayssier-Taussat M, Halin C, Rolink AG, Dehio C (2014) A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors. PLoS Pathog 10(6):e1004187.  https://doi.org/10.1371/journal.ppat.1004187CrossRefPubMedPubMedCentralGoogle Scholar
  50. Oliveira FS, Carvalho NB, Zamboni DS, Oliveira SC (2012) Nucleotide-binding oligomerization domain-1 and -2 play no role in controlling Brucella abortus infection in mice. Clin Dev Immunol 2012:861426.  https://doi.org/10.1155/2012/861426
  51. Palanivelu DV, Goepfert A, Meury M, Guye P, Dehio C, Schirmer T (2011) Fic domain-catalyzed adenylylation: insight provided by the structural analysis of the type IV secretion system effector BepA. Protein Sci 20(3):492–499.  https://doi.org/10.1002/pro.581CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pappas G, Akritidis N, Bosilkovski M, Tsianos E (2005) Brucellosis. N Engl J Med 352(22):2325–2336.  https://doi.org/10.1056/NEJMra050570CrossRefPubMedGoogle Scholar
  53. Pattis I, Weiss E, Laugks R, Haas R, Fischer W (2007) The Helicobacter pylori CagF protein is a type IV secretion chaperone-like molecule that binds close to the C-terminal secretion signal of the CagA effector protein. Microbiology 153(Pt 9):2896–2909.  https://doi.org/10.1099/mic.0.2007/007385-0CrossRefPubMedPubMedCentralGoogle Scholar
  54. Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ, Umayam L, Brinkac LM, Beanan MJ, Daugherty SC, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Nelson WC, Ayodeji B, Kraul M, Shetty J, Malek J, Van Aken SE, Riedmuller S, Tettelin H, Gill SR, White O, Salzberg SL, Hoover DL, Lindler LE, Halling SM, Boyle SM, Fraser CM (2002) The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA 99(20):13148–13153.  https://doi.org/10.1073/pnas.192319099CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pieles K, Glatter T, Harms A, Schmidt A, Dehio C (2014) An experimental strategy for the identification of AMPylation targets from complex protein samples. Proteomics 14(9):1048–1052.  https://doi.org/10.1002/pmic.201300470CrossRefPubMedGoogle Scholar
  56. Pulliainen AT, Pieles K, Brand CS, Hauert B, Bohm A, Quebatte M, Wepf A, Gstaiger M, Aebersold R, Dessauer CW, Dehio C (2012) Bacterial effector binds host cell adenylyl cyclase to potentiate Galphas-dependent cAMP production. Proc Natl Acad Sci USA 109(24):9581–9586.  https://doi.org/10.1073/pnas.1117651109CrossRefPubMedPubMedCentralGoogle Scholar
  57. Quebatte M, Christen M, Harms A, Korner J, Christen B, Dehio C (2017) Gene transfer agent promotes evolvability within the fittest subpopulation of a bacterial pathogen. Cell systems 4(6):611–621.  https://doi.org/10.1016/j.cels.2017.05.011CrossRefPubMedPubMedCentralGoogle Scholar
  58. Quebatte M, Dehio M, Tropel D, Basler A, Toller I, Raddatz G, Engel P, Huser S, Schein H, Lindroos HL, Andersson SG, Dehio C (2010) The BatR/BatS two-component regulatory system controls the adaptive response of Bartonella henselae during human endothelial cell infection. J Bacteriol 192(13):3352–3367.  https://doi.org/10.1128/JB.01676-09CrossRefPubMedPubMedCentralGoogle Scholar
  59. Quebatte M, Dick MS, Kaever V, Schmidt A, Dehio C (2013) Dual input control: activation of the Bartonella henselae VirB/D4 type IV secretion system by the stringent sigma factor RpoH1 and the BatR/BatS two-component system. Mol Microbiol 90(4):756–775.  https://doi.org/10.1111/mmi.12396CrossRefPubMedGoogle Scholar
  60. Radhakrishnan GK, Harms JS, Splitter GA (2011) Modulation of microtubule dynamics by a TIR domain protein from the intracellular pathogen Brucella melitensis. Biochem J 439(1):79–83.  https://doi.org/10.1042/BJ20110577CrossRefPubMedPubMedCentralGoogle Scholar
  61. Radhakrishnan GK, Yu Q, Harms JS, Splitter GA (2009) Brucella TIR domain-containing protein mimics properties of the Toll-like receptor adaptor protein TIRAP. J Biol Chem 284(15):9892–9898.  https://doi.org/10.1074/jbc.M805458200CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rhomberg TA, Truttmann MC, Guye P, Ellner Y, Dehio C (2009) A translocated protein of Bartonella henselae interferes with endocytic uptake of individual bacteria and triggers uptake of large bacterial aggregates via the invasome. Cell Microbiol 11(6):927–945.  https://doi.org/10.1111/j.1462-5822.2009.01302.xCrossRefPubMedGoogle Scholar
  63. Rolan HG, den Hartigh AB, Kahl-McDonagh M, Ficht T, Adams LG, Tsolis RM (2008) VirB12 is a serological marker of Brucella infection in experimental and natural hosts. Clin Vaccine Immunol 15(2):208–214.  https://doi.org/10.1128/CVI.00374-07CrossRefPubMedGoogle Scholar
  64. Roux CM, Rolan HG, Santos RL, Beremand PD, Thomas TL, Adams LG, Tsolis RM (2007) Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice. Cell Microbiol 9(7):1851–1869.  https://doi.org/10.1111/j.1462-5822.2007.00922.xCrossRefPubMedGoogle Scholar
  65. Saenz HL, Engel P, Stoeckli MC, Lanz C, Raddatz G, Vayssier-Taussat M, Birtles R, Schuster SC, Dehio C (2007) Genomic analysis of Bartonella identifies type IV secretion systems as host adaptability factors. Nat Genet 39(12):1469–1476.  https://doi.org/10.1038/ng.2007.38CrossRefPubMedGoogle Scholar
  66. Salcedo SP, Marchesini MI, Degos C, Terwagne M, Von Bargen K, Lepidi H, Herrmann CK, Santos Lacerda TL, Imbert PR, Pierre P, Alexopoulou L, Letesson JJ, Comerci DJ, Gorvel JP (2013) BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Front Cell Infect Microbiol 3:28.  https://doi.org/10.3389/fcimb.2013.00028CrossRefPubMedPubMedCentralGoogle Scholar
  67. Salcedo SP, Marchesini MI, Lelouard H, Fugier E, Jolly G, Balor S, Muller A, Lapaque N, Demaria O, Alexopoulou L, Comerci DJ, Ugalde RA, Pierre P, Gorvel JP (2008) Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog 4(2):e21.  https://doi.org/10.1371/journal.ppat.0040021CrossRefPubMedPubMedCentralGoogle Scholar
  68. Schmid MC, Scheidegger F, Dehio M, Balmelle-Devaux N, Schulein R, Guye P, Chennakesava CS, Biedermann B, Dehio C (2006) A translocated bacterial protein protects vascular endothelial cells from apoptosis. PLoS Pathog 2(11):e115.  https://doi.org/10.1371/journal.ppat.0020115CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schmid MC, Schulein R, Dehio M, Denecker G, Carena I, Dehio C (2004) The VirB type IV secretion system of Bartonella henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol Microbiol 52(1):81–92.  https://doi.org/10.1111/j.1365-2958.2003.03964.xCrossRefPubMedGoogle Scholar
  70. Scholz HC, Revilla-Fernandez S, Al Dahouk S, Hammerl JA, Zygmunt MS, Cloeckaert A, Koylass M, Whatmore AM, Blom J, Vergnaud G, Witte A, Aistleitner K, Hofer E (2016) Brucella vulpis sp. nov., isolated from mandibular lymph nodes of red foxes (Vulpes vulpes). Int J Syst Evol Microbiol 66(5):2090–2098.  https://doi.org/10.1099/ijsem.0.000998
  71. Schroder G, Schuelein R, Quebatte M, Dehio C (2011) Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc Natl Acad Sci USA 108(35):14643–14648.  https://doi.org/10.1073/pnas.1019074108CrossRefPubMedPubMedCentralGoogle Scholar
  72. Schulein R, Dehio C (2002) The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Mol Microbiol 46(4):1053–1067CrossRefPubMedGoogle Scholar
  73. Schulein R, Guye P, Rhomberg TA, Schmid MC, Schroder G, Vergunst AC, Carena I, Dehio C (2005) A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci USA 102(3):856–861.  https://doi.org/10.1073/pnas.0406796102CrossRefPubMedPubMedCentralGoogle Scholar
  74. Schulein R, Seubert A, Gille C, Lanz C, Hansmann Y, Piemont Y, Dehio C (2001) Invasion and persistent intracellular colonization of erythrocytes. A unique parasitic strategy of the emerging pathogen Bartonella. J Exp Med 193(9):1077–1086CrossRefPubMedPubMedCentralGoogle Scholar
  75. Selbach M, Paul FE, Brandt S, Guye P, Daumke O, Backert S, Dehio C, Mann M (2009) Host cell interactome of tyrosine-phosphorylated bacterial proteins. Cell Host Microbe 5(4):397–403.  https://doi.org/10.1016/j.chom.2009.03.004CrossRefPubMedGoogle Scholar
  76. Sengupta D, Koblansky A, Gaines J, Brown T, West AP, Zhang D, Nishikawa T, Park SG, Roop RM 2nd, Ghosh S (2010) Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter. MAL. J Immunol 184(2):956–964.  https://doi.org/10.4049/jimmunol.0902008CrossRefPubMedGoogle Scholar
  77. Seubert A, Hiestand R, de la Cruz F, Dehio C (2003) A bacterial conjugation machinery recruited for pathogenesis. Mol Microbiol 49(5):1253–1266CrossRefPubMedGoogle Scholar
  78. Siamer S, Dehio C (2015) New insights into the role of Bartonella effector proteins in pathogenesis. Curr Opin Microbiol 23:80–85.  https://doi.org/10.1016/j.mib.2014.11.007CrossRefPubMedGoogle Scholar
  79. Smith JA, Khan M, Magnani DD, Harms JS, Durward M, Radhakrishnan GK, Liu YP, Splitter GA (2013) Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages. PLoS Pathog 9(12):e1003785.  https://doi.org/10.1371/journal.ppat.1003785CrossRefPubMedPubMedCentralGoogle Scholar
  80. Stanger FV, de Beer TA, Dranow DM, Schirmer T, Phan I, Dehio C (2017) The BID domain of type IV secretion substrates forms a conserved four-helix bundle topped with a hook. Structure 25(1):203–211.  https://doi.org/10.1016/j.str.2016.10.010CrossRefPubMedGoogle Scholar
  81. Sun YH, Rolan HG, den Hartigh AB, Sondervan D, Tsolis RM (2005) Brucella abortus virB12 is expressed during infection but is not an essential component of the type IV secretion system. Infect Immun 73(9):6048–6054.  https://doi.org/10.1128/IAI.73.9.6048-6054.2005CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signals that spur autophagy and immunity. Immunol Rev 249(1):158–175.  https://doi.org/10.1111/j.1600-065X.2012.01146.xCrossRefPubMedPubMedCentralGoogle Scholar
  83. Tauch A, Schneiker S, Selbitschka W, Puhler A, van Overbeek LS, Smalla K, Thomas CM, Bailey MJ, Forney LJ, Weightman A, Ceglowski P, Pembroke T, Tietze E, Schroder G, Lanka E, van Elsas JD (2002) The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere. Microbiology 148(Pt 6):1637–1653.  https://doi.org/10.1099/00221287-148-6-1637CrossRefPubMedGoogle Scholar
  84. Tisdale EJ, Bourne JR, Khosravi-Far R, Der CJ, Balch WE (1992) GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J Cell Biol 119(4):749–761CrossRefPubMedGoogle Scholar
  85. Truttmann MC, Guye P, Dehio C (2011a) BID-F1 and BID-F2 domains of Bartonella henselae effector protein BepF trigger together with BepC the formation of invasome structures. PLoS ONE 6(10):e25106.  https://doi.org/10.1371/journal.pone.0025106CrossRefPubMedPubMedCentralGoogle Scholar
  86. Truttmann MC, Misselwitz B, Huser S, Hardt WD, Critchley DR, Dehio C (2011b) Bartonella henselae engages inside-out and outside-in signaling by integrin beta1 and talin1 during invasome-mediated bacterial uptake. J Cell Sci 124(Pt 21):3591–3602.  https://doi.org/10.1242/jcs.084459CrossRefPubMedGoogle Scholar
  87. Vayssier-Taussat M, Le Rhun D, Deng HK, Biville F, Cescau S, Danchin A, Marignac G, Lenaour E, Boulouis HJ, Mavris M, Arnaud L, Yang H, Wang J, Quebatte M, Engel P, Saenz H, Dehio C (2010) The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes. PLoS Pathog 6(6):e1000946.  https://doi.org/10.1371/journal.ppat.1000946CrossRefPubMedPubMedCentralGoogle Scholar
  88. Vergunst AC, van Lier MC, den Dulk-Ras A, Stuve TA, Ouwehand A, Hooykaas PJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102(3):832–837.  https://doi.org/10.1073/pnas.0406241102CrossRefPubMedPubMedCentralGoogle Scholar
  89. Vilchez G, Espinoza M, D’Onadio G, Saona P, Gotuzzo E (2015) Brucellosis in pregnancy: clinical aspects and obstetric outcomes. Int J Infect Dis 38:95–100.  https://doi.org/10.1016/j.ijid.2015.06.027CrossRefPubMedGoogle Scholar
  90. Worby CA, Mattoo S, Kruger RP, Corbeil LB, Koller A, Mendez JC, Zekarias B, Lazar C, Dixon JE (2009) The Fic domain: regulation of cell signaling by adenylylation. Mol Cell 34(1):93–103CrossRefPubMedPubMedCentralGoogle Scholar
  91. Xavier MN, Paixao TA, Poester FP, Lage AP, Santos RL (2009) Pathological, immunohistochemical and bacteriological study of tissues and milk of cows and fetuses experimentally infected with Brucella abortus. J Comp Pathol 140(2–3):149–157. S0021-9975(08)00141-2 [pii].  https://doi.org/10.1016/j.jcpa.2008.10.004
  92. Xavier MN, Winter MG, Spees AM, den Hartigh AB, Nguyen K, Roux CM, Silva TM, Atluri VL, Kerrinnes T, Keestra AM, Monack DM, Luciw PA, Eigenheer RA, Baumler AJ, Santos RL, Tsolis RM (2013) PPARgamma-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages. Cell Host Microbe 14(2):159–170.  https://doi.org/10.1016/j.chom.2013.07.009CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323(5911):269–272CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.BiozentrumUniversity of BaselBaselSwitzerland
  2. 2.Medical Microbiology and Immunology, University of California at DavisDavisUSA

Personalised recommendations