Brain Tumor Segmentation Using a Multi-path CNN Based Method

  • Sara Sedlar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10670)


In this paper an automatic brain tumor segmentation approach based on a multi-path Convolutional Neural Network (CNN) is presented. Proposition of the method was motivated by the success of multi-path CNNs, DeepMedic[1] and the method presented in [2], where the local and contextual pieces of information for segmentation were obtained from multi-scale regions. In addition to that, the method exploits the fact that very often tumor introduces high asymmetry to the brain. In order to help model in distinguishing between brain lesions and healthy brain structures such as sulci, gyri and ventricles, the model is provided with spatial information, as well. The model’s training and hyper-parameter tuning were performed on the BraTS 2017 training dataset, model’s validation was done on the BraTS 2017 validation dataset and the final results are reported on the BraTS 2017 testing dataset. The average Dice scores obtained on the testing dataset are 0.6049, 0.8436 and 0.6938 for enhancing tumor, whole tumor and tumor core, respectively.


Brain tumor Tumor segmentation CNN segmentation 


  1. 1.
    Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  2. 2.
    Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  3. 3.
    Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J.W.W., Comber, H., Forman, D., Bray, F.: Cancer incidence and mortality patterns in europe: Estimates for 40 countries in 2012. Eur. J. Cancer 49(6), 1374–1403 (2013).
  4. 4.
    Ward, E., DeSantis, C., Robbins, A., Kohler, B., Jemal, A.: Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin. 64(2), 83–103 (2014)CrossRefGoogle Scholar
  5. 5.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2016. CA Cancer J. Clin. 66(1), 7–30 (2016)CrossRefGoogle Scholar
  6. 6.
    Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X.Q., He, J.: Cancer statistics in china, 2015. CA Cancer J. Clin. 66(2), 115–132 (2016)CrossRefGoogle Scholar
  7. 7.
    Miller, K.D., Siegel, R.L., Lin, C.C., Mariotto, A.B., Kramer, J.L., Rowland, J.H., Stein, K.D., Alteri, R., Jemal, A.: Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin. 66(4), 271–289 (2016)CrossRefGoogle Scholar
  8. 8.
    Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., Bray, F.: Cancer incidence and mortality worldwide: sources, methods and major patterns in globocan 2012. Int. J. Cancer 136(5) (2015)Google Scholar
  9. 9.
    Pieros, M., Sierra, M.S., Izarzugaza, M.I., Forman, D.: Descriptive epidemiology of brain and central nervous system cancers in central and south america. Cancer Epidemiol. 44(suppl. 1), S141–S149 (2016)., Supplement: Cancer in Central and South America
  10. 10.
    Ostrom, Q.T., Bauchet, L., Davis, F.G., Deltour, I., Fisher, J.L., Langer, C.E., Pekmezci, M., Schwartzbaum, J.A., Turner, M.C., Walsh, K.M., et al.: The epidemiology of glioma in adults: a state of the science review. Neuro-oncology 16(7), 896–913 (2014)Google Scholar
  11. 11.
    Schwartzbaum, J.A., Fisher, J.L., Aldape, K.D., Wrensch, M.: Epidemiology and molecular pathology of glioma. Nat. Rev. Neurol. 2(9), 494 (2006)CrossRefGoogle Scholar
  12. 12.
    Jazayeri, S.B., Rahimi-Movaghar, V., Shokraneh, F., Saadat, S., Ramezani, R.: Epidemiology of primary CNS tumors in Iran: a systematic. Asian Pac. J. Cancer Prev. 14(6), 3979–3985 (2013)CrossRefGoogle Scholar
  13. 13.
    Deltour, I., Johansen, C., Auvinen, A., Feychting, M., Klaeboe, L., Schüz, J.: Time trends in brain tumor incidence rates in Denmark, Finland, Norway, and Sweden, 1974–2003. J. Natl. Cancer Inst. 101(24), 1721–1724 (2009)CrossRefGoogle Scholar
  14. 14.
    Trabelsi, S., Brahim, D.H.B., Ladib, M., Mama, N., Harrabi, I., Tlili, K., Yacoubi, M.T., Krifa, H., Hmissa, S., Saad, A., et al.: Glioma epidemiology in the central tunisian population. Asian Pac. J. Cancer Prev. 15(20), 8753–8757 (2014)CrossRefGoogle Scholar
  15. 15.
    Bondy, M.L., Scheurer, M.E., Malmer, B., Barnholtz-Sloan, J.S., Davis, F.G., Il’Yasova, D., Kruchko, C., McCarthy, B.J., Rajaraman, P., Schwartzbaum, J.A., et al.: Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer 113(S7), 1953–1968 (2008)CrossRefGoogle Scholar
  16. 16.
    Dobes, M., Shadbolt, B., Khurana, V.G., Jain, S., Smith, S.F., Smee, R., Dexter, M., Cook, R.: A multicenter study of primary brain tumor incidence in Australia (2000–2008). Neuro-oncology 13(7), 783–790 (2011)CrossRefGoogle Scholar
  17. 17.
    de Robles, P., Fiest, K.M., Frolkis, A.D., Pringsheim, T., Atta, C., St. Germaine-Smith, C., Day, L., Lam, D., Jette, N.: The worldwide incidence and prevalence of primary brain tumors: a systematic review and meta-analysis. Neuro-oncology 17(6), 776–783 (2014)Google Scholar
  18. 18.
    Crocetti, E., Trama, A., Stiller, C., Caldarella, A., Soffietti, R., Jaal, J., Weber, D.C., Ricardi, U., Slowinski, J., Brandes, A., et al.: Epidemiology of glial and non-glial brain tumours in Europe. Eur. J. Cancer 48(10), 1532–1542 (2012)CrossRefGoogle Scholar
  19. 19.
    Gittleman, H.R., Ostrom, Q.T., Rouse, C.D., Dowling, J.A., De Blank, P.M., Kruchko, C.A., Elder, J.B., Rosenfeld, S.S., Selman, W.R., Sloan, A.E., et al.: Trends in central nervous system tumor incidence relative to other common cancers in adults, adolescents, and children in the United States, 2000 to 2010. Cancer 121(1), 102–112 (2015)CrossRefGoogle Scholar
  20. 20.
    Lee, C.H., Jung, K.W., Yoo, H., Park, S., Lee, S.H.: Epidemiology of primary brain and central nervous system tumors in Korea. J. Korean Neurosurg. Soc. 48(2), 145–152 (2010)CrossRefGoogle Scholar
  21. 21.
    Ostrom, Q.T., De Blank, P.M., Kruchko, C., Petersen, C.M., Liao, P., Finlay, J.L., Stearns, D.S., Wolff, J.E., Wolinsky, Y., Letterio, J.J., et al.: Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology 16(suppl–10), x1–x36 (2014)CrossRefGoogle Scholar
  22. 22.
    Papathoma, P., Thomopoulos, T.P., Karalexi, M.A., Ryzhov, A., Zborovskaya, A., Dimitrova, N., Zivkovic, S., Eser, S., Antunes, L., Sekerija, M., et al.: Childhood central nervous system tumours: incidence and time trends in 13 Southern and Eastern European cancer registries. Eur. J. Cancer 51(11), 1444–1455 (2015)CrossRefGoogle Scholar
  23. 23.
    Johnson, K.J., Cullen, J., Barnholtz-Sloan, J.S., Ostrom, Q.T., Langer, C.E., Turner, M.C., McKean-Cowdin, R., Fisher, J.L., Lupo, P.J., Partap, S., et al.: Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol. Prevent. Biomarkers, pp. cebp-0207 (2014)Google Scholar
  24. 24.
    van der Kolk, A.G., Hendrikse, J., Zwanenburg, J.J., Visser, F., Luijten, P.R.: Clinical applications of 7T MRI in the brain. Eur. J. Radiol. 82(5), 708–718 (2013)CrossRefGoogle Scholar
  25. 25.
    Pope, W.B., Young, J.R., Ellingson, B.M.: Advances in MRI assessment of gliomas and response to anti-vegf therapy. Curr. Neurol. Neurosci. Rep. 11(3), 336–344 (2011)CrossRefGoogle Scholar
  26. 26.
    Wu, D., Zhang, J.: Recent progress in magnetic resonance imaging of the embryonic and neonatal mouse brain. Front. Neuroanat. 10, 1–8 (2016)Google Scholar
  27. 27.
    Koretsky, A.P.: New developments in magnetic resonance imaging of the brain. NeuroRx 1(1), 155–164 (2004)CrossRefGoogle Scholar
  28. 28.
    Mabray, M.C., Barajas, R.F., Cha, S.: Modern brain tumor imaging. Brain Tumor Res. Treat. 3(1), 8–23 (2015)CrossRefGoogle Scholar
  29. 29.
    Duyn, J.H.: Study of brain anatomy with high-field mri: recent progress. Magn. Reson. Imaging 28(8), 1210–1215 (2010)CrossRefGoogle Scholar
  30. 30.
    Villanueva-Meyer, J.E., Mabray, M.C., Cha, S.: Current clinical brain tumor imaging. Neurosurgery 81(3), 397–415 (2017)CrossRefGoogle Scholar
  31. 31.
    Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., Wagner, H.: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int. J. Radiat. Oncol. Biol. Phys. 59(1), 300–312 (2004)CrossRefGoogle Scholar
  32. 32.
    Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  33. 33.
    Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)CrossRefGoogle Scholar
  34. 34.
    Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017)Google Scholar
  35. 35.
    Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017)Google Scholar
  36. 36.
    Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)CrossRefGoogle Scholar
  37. 37.
    Agn, M., Puonti, O., Rosenschöld, P.M., Law, I., Van Leemput, K.: Brain tumor segmentation using a generative model with an RBM prior on tumor shape. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 168–180. Springer, Cham (2016). CrossRefGoogle Scholar
  38. 38.
    Menze, B.H., van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  39. 39.
    Gooya, A., Pohl, K.M., Bilello, M., Cirillo, L., Biros, G., Melhem, E.R., Davatzikos, C.: Glistr: glioma image segmentation and registration. IEEE Trans. Med. Imaging 31(10), 1941–1954 (2012)CrossRefGoogle Scholar
  40. 40.
    Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  41. 41.
    Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhu, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115(2), 256–269 (2011)CrossRefGoogle Scholar
  42. 42.
    Geremia, E., Menze, B.H., Ayache, N., et al.: Spatial decision forests for glioma segmentation in multi-channel MR images. In: MICCAI Challenge on Multimodal Brain Tumor Segmentation, vol. 34 (2012)Google Scholar
  43. 43.
    Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  44. 44.
    Goetz, M., Weber, C., Bloecher, J., Stieltjes, B., Meinzer, H.P., Maier-Hein, K.: Extremely randomized trees based brain tumor segmentation. In: Proceeding of BRATS challenge-MICCAI, pp. 006–011 (2014)Google Scholar
  45. 45.
    Ho, S., Bullitt, E., Gerig, G.: Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: Proceedings of 16th International Conference on Pattern Recognition, vol. 1, pp. 532–535. IEEE (2002)Google Scholar
  46. 46.
    Wang, T., Cheng, I., Basu, A., et al.: Fluid vector flow and applications in brain tumor segmentation. IEEE Trans. Biomed. Eng. 56(3), 781–789 (2009)CrossRefGoogle Scholar
  47. 47.
    Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor-cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans. Med. Imaging 31(3), 790–804 (2012)CrossRefGoogle Scholar
  48. 48.
    Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS, pp. 36–39 (2014)Google Scholar
  49. 49.
    Dvorak, P., Menze, B.H.: Local structure prediction with convolutional neural networks for multimodal brain tumor segmentation. In: MCV@ MICCAI, pp. 59–71 (2015)Google Scholar
  50. 50.
    Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using u-net based fully convolutional networks. arXiv preprint arXiv:1705.03820 (2017)
  51. 51.
    Beers, A., Chang, K., Brown, J., Sartor, E., Mammen, C., Gerstner, E., Rosen, B., Kalpathy-Cramer, J.: Sequential 3D u-nets for biologically-informed brain tumor segmentation. arXiv preprint arXiv:1709.02967 (2017)
  52. 52.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). CrossRefGoogle Scholar
  53. 53.
    Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Xie, L., Wang, J., Wei, Z., Wang, M., Tian, Q.: Disturblabel: regularizing CNN on the loss layer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4753–4762 (2016)Google Scholar
  55. 55.
    Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 4, 532–550 (1987)CrossRefGoogle Scholar
  56. 56.
    Brett, M., Hanke, M., Cipollini, B., Côté, M.A., Markiewicz, C., Gerhard, S., Larson, E., Lee, G.R., Halchenko, Y., Kastman, E., et al.: nibabel: 2.1. 0. Zenodo (2016)Google Scholar
  57. 57.
    Jones, E., Oliphant, T., Peterson, P.: \(\{\)SciPy\(\}\): open source scientific tools for \(\{\)Python\(\}\) (2014)Google Scholar
  58. 58.
    van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)CrossRefGoogle Scholar
  59. 59.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
  60. 60.
    Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)Google Scholar
  61. 61.
    Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sara Sedlar
    • 1
  1. 1.MitrovicaSerbia

Personalised recommendations