Impact of Cyclodextrin in Drug Delivery System

  • Somesh Mohapatra
  • Oshin Sapra
  • Shweta Paroha
  • Ravindra Dhar Dubey
Part of the Sustainable Agriculture Reviews book series (SARV, volume 27)


With advances in understanding diseases, precise requirements in terms of drug delivery comes up. There is a need for more knowledge on specific release patterns, microenvironment sensitive release, and biodegradation. Cyclodextrins provide extreme flexibility in design of chemical structures and complexes, viability of using multiple drugs with varying release rates and administration mechanisms. There are several ongoing studies at multiple stages – clinical, pre-clinical, laboratory and even proof of concept, where the efficacy of cyclodextrin based systems are being investigated. This review analyzes the biochemical and drug delivery aspects of cyclodextrin.


Cyclodextrin Drug delivery Pharmacokinetics Drug release 


  1. Aftab BT et al (2013) Itraconazole and arsenic trioxide inhibit hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 23(1):23–34. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alonso-Sande M, Csaba NS, Alonso MJ (2016) New perspectives in oral peptide and protein delivery: from nanocarrier design to in vivo effectiveness. In: New perspectives, pp 46–64. CrossRefGoogle Scholar
  3. Anirudhan TS, Divya PL, Nima J (2016) Synthesis and characterization of novel drug delivery system using modified chitosan based hydrogel grafted with cyclodextrin. Chem Eng J 284:1259–1269. CrossRefGoogle Scholar
  4. Ansari MJ et al (2014) Solubility and stability enhancement of curcumin through cyclodextrin complexation. Int J Biol Pharm Allied Sci 3(11):2668–2675Google Scholar
  5. Atwood, J. L. et al. (1996) Comprehensive Supramolecular chemistry Vol. 3: cyclodextrins. Pergamonn press inc., maxwell house, Elmsford, New York, USAGoogle Scholar
  6. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764. CrossRefPubMedGoogle Scholar
  7. Canbolat MF, Celebioglu A, Uyar T (2014) Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surf B: Biointerfaces 115:15–21. CrossRefPubMedGoogle Scholar
  8. Casettari L, Illum L (2014) Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 190:189–200. CrossRefPubMedGoogle Scholar
  9. Castor TP (2013) Polymer microspheres/nanospheres and encapsulating therapeutic proteins therein. US Patent 8,440,614, 14 May 2013Google Scholar
  10. Challa R et al (2005) Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6(2):E329–E357. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen J et al (2014) Drug-in-cyclodextrin-in-liposomes: a promisingdelivery system for hydrophobicdrugs. Expert Opin Drug Deliv 11(4):565–577. CrossRefPubMedGoogle Scholar
  12. Cheng R et al (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmedsite-specific drug delivery. Biomaterials 34(14):3647–3657. CrossRefPubMedGoogle Scholar
  13. Chilajwar SV et al (2014) Cyclodextrin-based nanosponges: a propitious platform for enhancing drug delivery. Expert Opin. Drug Deliv 11(1):111–120. CrossRefPubMedGoogle Scholar
  14. Cirri M et al (2017) Development and in vivo evaluation of an innovative “Hydrochlorothiazide-in Cyclodextrins-in Solid Lipid Nanoparticles” formulation with sustained release and enhanced oral bioavailability for potential hypertension treatment in pediatrics. Int J Pharm 521(1):73–83. CrossRefPubMedGoogle Scholar
  15. Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3(12):1023–1035. CrossRefPubMedGoogle Scholar
  16. Del V, Martin EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046. CrossRefGoogle Scholar
  17. Ding C, Zhang M, Li G (2015) Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film. Carbohydr Polym 119:194–201. CrossRefPubMedGoogle Scholar
  18. Fedorov YV et al (2015) Photoinduced guest transformation promotes translocation of guest from hydroxypropyl-β-cyclodextrin to cucurbit [7] uril. Chem Commun 51(7):1349–1352. CrossRefGoogle Scholar
  19. Felton LA et al (2014) Experimental and computational studies of physicochemical properties influence NSAID-cyclodextrin complexation. AAPS PharmSciTech 15(4):872–881. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fox SC et al (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 12(6):1956–1972. CrossRefPubMedGoogle Scholar
  21. Friend DR (2005) New oral delivery systems for treatment of inflammatory bowel disease. Adv Drug Deliv Rev 57(2):247–265. CrossRefPubMedGoogle Scholar
  22. Ge Z, Liu S (2013) Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev 42(17):7289–7325. CrossRefPubMedGoogle Scholar
  23. Gidwani B, Vyas A (2014) Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B: Biointerfaces 114:130–137. CrossRefPubMedGoogle Scholar
  24. Hanchanale V, Eardley I (2014) Alprostadil for the treatment of impotence. Expert Opin Pharmacother 15(3):421–428. CrossRefPubMedGoogle Scholar
  25. Harada A et al (1997) Preparation and characterization of inclusion complexes of aliphatic polyesters with cyclodextrins. Macromolecules 30(23):7115–7118. CrossRefGoogle Scholar
  26. Hasegawa M et al (2013) Clinical analysis of leg ulcers and gangrene in rheumatoid arthritis. J Dermatol 40(12):949–954. CrossRefPubMedGoogle Scholar
  27. Hazra S, Kumar GS (2015) Physicochemical properties of inclusion complexes of sanguinarine with natural cyclodextrins:spectroscopy, calorimetry and NMR studies. RSC Adv 5(3):1873–1882. CrossRefGoogle Scholar
  28. Huang D et al (2002) Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated β-cyclodextrin as the solubility enhancer. J Agric Food Chem 50(7):1815–1821. CrossRefPubMedGoogle Scholar
  29. Huang J et al (2015) Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 39:105–113. CrossRefPubMedGoogle Scholar
  30. Ijaz M et al (2015) Synthesis and characterization of thiolated β-cyclodextrin as a novel mucoadhesive excipient for intra-oral drug delivery. Carbohydr Polym 132:187–195. CrossRefPubMedGoogle Scholar
  31. Inoue Y et al (2014) Stabilizing Effect of β-Cyclodextrin on Limaprost, a PGE1 Derivative, in Limaprost Alfadex Tablets (Opalmon®) in Highly Humid Conditions. Chem Pharm Bull 62(8):786–792. CrossRefPubMedGoogle Scholar
  32. Inoue A et al (2016) Lichenoid drug eruption caused by limaprost alfadex. Acta Derm Venereol 96(7):997–998. CrossRefPubMedGoogle Scholar
  33. Iohara D et al (2016) In Vitro and In Vivo Evaluation of Hydrophilic C 60 (OH) 10/2-Hydroxypropyl-β-cyclodextrin Nanoparticles as an Antioxidant. J Pharm Sci 105(9):2959–2965. CrossRefPubMedGoogle Scholar
  34. Ito H, Imamura S (2016) Scald-induced Necrobiosis Lipoidica in a patient with diabetes mellitus and psoriasis. Case Rep Dermatol 8(1):1–4. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jia Y-G et al (2016) A molecular necklace: threading β-Cyclodextrins onto polymers derived from bile acids. Angew Chem 128(39):12158–12162. CrossRefGoogle Scholar
  36. Kanchiku T et al (2014) Comparisons on efficacy of elcatonin and limaprost alfadex in patients with lumbar spinal stenosis and concurrent osteoporosis: a preliminary study using a crossover design. Asian Spine J 8(4):469–475. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kang-Mieler JJ, Osswald CR, Mieler WF (2014) Advances in ocular drug delivery: emphasis on the posterior segment. Expert Opin Drug Deliv 11(10):1647–1660. CrossRefPubMedGoogle Scholar
  38. Kaur P et al (2016) In situ nasal gel drug delivery: a novel approach for brain targeting through the mucosal membrane. Artif Cells Nanomedicine Biotechnol 444:1167–1176. CrossRefGoogle Scholar
  39. Kaushik D, Dureja H (2014) Recent patents and patented technology platforms for pharmaceutical taste masking. Recent Pat Drug Deliv Formul 8(1):37–45CrossRefGoogle Scholar
  40. Kim J et al (2013) Itraconazole and arsenic trioxide inhibit hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 23(1):23–34. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kim DJ et al (2014) Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J Clin Oncol 32(8):745–751. CrossRefPubMedGoogle Scholar
  42. Klangmuang P, Sothornvit R (2016) Combination of beeswax and nanoclay on barriers, sorption isotherm and mechanical properties of hydroxypropyl methylcellulose-based composite films. LWT-Food Sci Technol 65:222–227. CrossRefGoogle Scholar
  43. Kumaravelrajan R (2016) Development and evaluation of elementary osmotic pump for the simultaneous delivery of nifedipine and metoprolol tartrate. Asian J Pharm 10(04):S583. CrossRefGoogle Scholar
  44. Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453(1):167–180. CrossRefPubMedGoogle Scholar
  45. Lakkakula JR, Krause RWM (2014) A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine 9(6):877–894. CrossRefPubMedGoogle Scholar
  46. Lee S-S et al (2014) Infrared multiple photon dissociation spectroscopy and density functional theory (DFT) studies of protonated permethylated β-cyclodextrin–water non-covalent complexes. Phys Chem Chem Phys 16(18):8376–8383. CrossRefPubMedGoogle Scholar
  47. Liang Z et al (2015) Recent advances in controlled pulmonary drug delivery. Drug Discov Today 20(3):380–389. CrossRefPubMedGoogle Scholar
  48. Loftsson T et al (2005) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2(2):335–351. CrossRefPubMedGoogle Scholar
  49. Luzardo-Alvarez A et al (2014) Cyclodextrin-based polysaccharidic polymers: an approach for the drug delivery. Curr Top Med Chem 14(4):542–551CrossRefGoogle Scholar
  50. Masson P (2016) Nerve agents: catalytic scavengers as an alternative approach for medical countermeasures. Chem Warfare Toxicol:43–81.
  51. Mastellos DC et al (2016) Complement therapeutics in inflammatory diseases: promising drug candidates for C3-targeted intervention. Mol Oral Microbiol 31(1):3–17. CrossRefPubMedGoogle Scholar
  52. Matloob AH et al (2014) Increasing the stability of curcumin in serum with liposomes or hybrid drug-in-cyclodextrin-in-liposome systems: a comparative study. Int J Pharm 476(1):108–115. CrossRefPubMedGoogle Scholar
  53. Maus MV, Powell DJ Jr (2015) CAR T cells: new approaches to improve their efficacy and reduce toxicity. Cancer J 21(6):475. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Mavroudi MC, Kapnissi-Christodoulou CP (2015) Combined use of l-alanine tert butyl ester lactate and trimethyl-β-cyclodextrin for the enantiomeric separations of 2-arylpropionic acids nonsteroidal anti-inflammatory drugs. Electrophoresis 36(19):2442–2450. CrossRefPubMedGoogle Scholar
  55. Mehanna MM, Mohyeldin SM, Elgindy NA (2014) Respirable nanocarriers as a promising strategy for antitubercular drug delivery. J Control Release 187:183–197. CrossRefPubMedGoogle Scholar
  56. Mennini N et al (2016) Comparison of liposomal and NLC (nanostructured lipid carrier) formulations for improving the transdermal delivery of oxaprozin: effect of cyclodextrin complexation. Int J Pharm 515(1):684–691. CrossRefPubMedGoogle Scholar
  57. Merino S et al (2015) Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS Nano 9(5):4686–4697. CrossRefPubMedGoogle Scholar
  58. de Miranda JC et al (2011) Cyclodextrins and ternary complexes: technologyto improve solubility of poorly soluble drugs. Braz J Pharm Sci 47(4):665–681. CrossRefGoogle Scholar
  59. Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog Polym Sci 38(2):344–368. CrossRefGoogle Scholar
  60. Muankaew C et al (2014) Effect of γ-cyclodextrin on solubilization and complexation of irbesartan: influence of pH and excipients. Int J Pharm 474(1):80–90. CrossRefPubMedGoogle Scholar
  61. Mura P et al (2014) Development of liposomal and microemulsion formulations for transdermal delivery of clonazepam: effect of randomly methylated β-cyclodextrin. Int J Pharm 475(1):306–314. CrossRefPubMedGoogle Scholar
  62. Mura P et al (2016) Polymeric mucoadhesive tablets for topical or systemic buccal delivery of clonazepam: effect of cyclodextrin complexation. Carbohydr Polym 152:755–763. CrossRefPubMedGoogle Scholar
  63. Neirynck P et al (2015) Carborane–β-cyclodextrin complexes as a supramolecular connector for bioactive surfaces. J Mater Chem B 3(4):539–545. CrossRefGoogle Scholar
  64. Ninomiya K et al (2014) Ultrasound-mediated drug delivery using liposomes modified with a thermosensitive polymer. Ultrason Sonochem 21(1):310–316. CrossRefPubMedGoogle Scholar
  65. Noël S et al (2014) Cyclodextrin-based systems for the stabilization of metallic (0) nanoparticles and their versatile applications in catalysis. Catal Today 235:20–32. CrossRefGoogle Scholar
  66. de Oliveira JL et al (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561. CrossRefPubMedGoogle Scholar
  67. Ortega-Toro R et al (2014) Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydr Polym 109:155–165. CrossRefPubMedGoogle Scholar
  68. Patel A et al (2013) Ocular drug delivery systems: an overview. World J Pharmacol 2(2):47CrossRefGoogle Scholar
  69. Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115(19):10938–10966. CrossRefPubMedGoogle Scholar
  70. Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098. CrossRefPubMedGoogle Scholar
  71. Peng Y, He QS, Cai J (2016) Enantioseparation of Citalopram by RP-HPLC, using Sulfobutyl Ether-β-Cyclodextrin as a chiral mobile phase additive. Int J Anal Chem 2016:1. CrossRefGoogle Scholar
  72. Potier J et al (2014) Synergetic effect of randomly methylated β-cyclodextrin and a supramolecular hydrogel in Rh-catalyzed hydroformylation of higher olefins. ACS Catal 4(7):2342–2346. CrossRefGoogle Scholar
  73. Pradines B et al (2015) The unexpected increase of clotrimazole apparent solubility using randomly methylated β-cyclodextrin. J Mol Recognit 28(2):96–102. CrossRefPubMedGoogle Scholar
  74. Qin C et al (2014) Controlled release of metformin hydrochloride and repaglinide from sandwiched osmotic pump tablet. Int J Pharm 466(1):276–285. CrossRefPubMedGoogle Scholar
  75. Quintans J d SS et al (2013) Improvement of p-cymene antinociceptive and anti-inflammatory effects by inclusion in β-cyclodextrin. Phytomedicine 20(5):436–440. CrossRefGoogle Scholar
  76. Rabti H et al (2014) Carbamazepine solubility enhancement in tandem with swellable polymer osmotic pump tablet: a promising approach for extended delivery of poorly water-soluble drugs. Asian J Pharm Sci 9(3):146–154. CrossRefGoogle Scholar
  77. Rivera-Delgado E, von Recum HA (2017) Using affinity to provide long-term delivery of Antiangiogenic drugs in cancer therapy. Mol Pharm 14(3):899–907. CrossRefPubMedGoogle Scholar
  78. Rodrigues LB et al (2017) Anti-inflammatory activity of the essential oil obtained from Ocimum basilicum complexed with β-cyclodextrin (β-CD) in mice. Food Chem Toxicol 109:836. CrossRefPubMedGoogle Scholar
  79. Saenger W et al (1998) Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chem Rev 98(5):1787–1802. CrossRefPubMedGoogle Scholar
  80. Sauer R-S et al (2017) A novel approach for the control of inflammatory pain: prostaglandin E2 Complexation by randomly methylated β-Cyclodextrins. Anesth Analg 124(2):675–685. CrossRefPubMedGoogle Scholar
  81. Sharma N, Baldi A (2016) Exploring versatile applications of cyclodextrins: an overview. Drug Deliv 23(3):729–747. CrossRefGoogle Scholar
  82. Steiger C et al (2016) Prevention of colitis by controlled oral drug delivery of carbon monoxide. J Control Release 239:128–136. CrossRefPubMedGoogle Scholar
  83. Tabuchi R et al (2016) Biomaterials based on freeze dried surface-deacetylated chitin nanofibers reinforced with sulfobutyl ether β-cyclodextrin gel in wound dressing applications. Int J Pharm 511(2):1080–1087. CrossRefPubMedGoogle Scholar
  84. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity andnovel drug delivery systems. J Pharm Pharmacol 65(2):157–170. CrossRefPubMedGoogle Scholar
  85. Thatiparti TR, Juric D, von Recum HA (2017) Pseudopolyrotaxane formation in the synthesis of cyclodextrin polymers: effects on drug delivery, mechanics, and cell compatibility. Bioconjug Chem 28:1048. CrossRefPubMedGoogle Scholar
  86. Uekama K, Otagiri M (1986) Cyclodextrins in drug carrier systems. Crit Rev Ther Drug Carrier Syst 3(1):1–40Google Scholar
  87. Wang X, Luo Z, Xiao Z (2014) Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex. Carbohydr Polym 101:1027–1032. CrossRefPubMedGoogle Scholar
  88. Wang Y et al (2015a) ZnO-Functionalized Upconverting Nanotheranostic Agent: Multi-Modality Imaging-Guided Chemotherapy with On-Demand Drug Release Triggered by pH. Angew Chem Int Ed 54(2):536–540. CrossRefGoogle Scholar
  89. Wang Z et al (2015b) Preparation and catalytic property of PVDF composite membrane with polymeric spheres decorated by Pd nanoparticles in membrane pores. J Membr Sci 496:95–107. CrossRefGoogle Scholar
  90. Wang L et al (2016a) Degradation behavior of theophylline/chitosan/β-cyclodextrin microspheres for pulmonary drug delivery. Bangladesh J Pharmacol 11(S1):116–122. CrossRefGoogle Scholar
  91. Wang L-L et al (2016b) Development of rectal delivered thermo-reversible gelling film encapsulating a 5-fluorouracil hydroxypropyl-β-cyclodextrin complex. Carbohydr Polym 137:9–18. CrossRefPubMedGoogle Scholar
  92. Waring MJ et al (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14(7):475–486. CrossRefPubMedGoogle Scholar
  93. Wenz G (1994) Cyclodextrins as building blocks for supramolecular structures and functional units. Angew Chem Int Ed Engl 33(8):803–822. CrossRefGoogle Scholar
  94. Xu T et al (2016) Controlled fabrication of nanostructures by assembling Au nanoparticles on functionalized polymeric spheres. Colloids Surf A Physicochem Eng Asp 498:139–145. CrossRefGoogle Scholar
  95. Yankovsky I et al (2016) Inclusion complexation with β-cyclodextrin derivatives alters photodynamic activity and biodistribution of meta-tetra (hydroxyphenyl) chlorin. Eur J Pharm Sci 91:172–182. CrossRefPubMedGoogle Scholar
  96. Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recentprogress and future perspective. Adv Drug Deliv Rev 65(9):1215–1233. CrossRefPubMedGoogle Scholar
  97. Zhang L et al (2015) Drug-in-cyclodextrin-in-liposomes: a novel drug delivery system for flurbiprofen. Int J Pharm 492(1):40–45. CrossRefPubMedGoogle Scholar
  98. Zia V, Vander Velde D, Stella VJ (2014) Extrathermodynamic relations in the binding of charged and neutral substrates to sulfobutylether-β-CDs (SBE-β-CDs) and a2-hydroxypropyl-β-CD (HP-β-CD). J Incl Phenom Macrocycl Chem 79(3–4):503–512. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Somesh Mohapatra
    • 1
  • Oshin Sapra
    • 2
  • Shweta Paroha
    • 3
  • Ravindra Dhar Dubey
    • 4
  1. 1.Metallurgical and Materials Engineering DepartmentIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Chemical Engineering DepartmentIndian Institute of Technology RoorkeeRoorkeeIndia
  3. 3.School of Pharmaceutical SciencesSiksha O Anushandhan UniversityBhubneswarIndia
  4. 4.Department of Pharmaceutical SciencesGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations