Cellular ANTomata: A Tool for Early PDC Education

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10659)

Abstract

The thesis of this essay is that the Cellular ANTomaton (CAnt) computational model—obtained by deploying a team of mobile finite-state machines (the model’s “Ants”) upon a cellular automaton (CA)—can be a highly effective platform for introducing early undergraduate students to a broad range of concepts relating to parallel and distributed computing (PDC). CAnts permit many sophisticated PDC concepts to be taught within a unified, perspicuous model and then experimented with using the many easily accessed systems for simulating CAs and CAnts. Space restrictions limit us to supporting the thesis via only three important PDC concepts: synchronization, (algorithmic) scalability, and leader election (symmetry breaking). Having a single versatile pedagogical platform facilitates the goal of endowing all undergraduate students with a level of computational literacy adequate for success in an era characterized increasingly by ubiquitous parallel and/or distributed computing devices.

Keywords

Cellular automata and ANTomata Teaching PDC to early undergrads 

References

  1. 1.
    Avis, D., Bremmer, D., Deza, A. (eds.): Polyhedral computation. In: CRM Proceedings and Lecture Notes, vol. 48. American Mathematical Society (2009)Google Scholar
  2. 2.
    Chen, L., Xu, X., Chen, Y., He, P.: A novel ant clustering algorithm based on cellular automata. In: IEEE/WIC/ACM International Conference, Intelligent Agent Technology (2004)Google Scholar
  3. 3.
    Chowdhury, D., Guttal, V., Nishinari, K., Schadschneider, A.: A cellular-automata model of flow in ant trails: non-monotonic variation of speed with density. J. Phys. A: Math. Gen. 35, L573–L577 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (1999)MATHGoogle Scholar
  5. 5.
    Fisher, A.L., Kung, H.T.: Synchronizing large VLSI processor arrays. IEEE Trans. Comput. C-34, 734–740 (1985)Google Scholar
  6. 6.
    Goles, E., Martinez, S. (eds.): Cellular Automata and Complex Systems. Kluwer, Norwell (1999)Google Scholar
  7. 7.
    Greene, J.W., El Gamal, A.: Configuration of VLSI arrays in the presence of defects. J. ACM 31, 694–717 (1984)CrossRefMATHGoogle Scholar
  8. 8.
    Gruska, J., La Torre, S., Parente, M.: Optimal time and communication solutions of firing squad synchronization problems on square arrays, toruses and rings. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 200–211. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30550-7_17 CrossRefGoogle Scholar
  9. 9.
    Laurio, K., Linaker, F., Narayanan, A.: Regular biosequence pattern matching with cellular automata. Inf. Sci. 146(1–4), 89–101 (2002)Google Scholar
  10. 10.
    Leighton, F.T., Leiserson, C.E.: Wafer-scale integration of systolic arrays. IEEE Trans. Comput. C-34, 448–461 (1985)Google Scholar
  11. 11.
    Leiserson, C.E.: Systolic and semisystolic design. In: IEEE International Conference on Computer Design, pp. 627–630 (1983)Google Scholar
  12. 12.
    Marchese, F.: Cellular automata in robot path planning. In: EUROBOT, pp. 116–125 (1996)Google Scholar
  13. 13.
    Moore, E.F: The firing squad synchronization problem. In: Moore, E.F. (ed.) Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Boston (1962)Google Scholar
  14. 14.
  15. 15.
    Prasad, S.K., Gupta, A., Kant, K., Lumsdaine, A., Padua, D., Robert, Y., Rosenberg, A.L., Sussman, A., Weems, C.: Literacy for all in parallel and distributed computing: guidelines for an undergraduate core curriculum. CSI J. Comput. 1(2), 10:81–10:95 (2012)Google Scholar
  16. 16.
    Quinton, P.: Automatic synthesis of systolic arrays from uniform recurrence equations. In: 11th IEEE International Symposium on Computer Architecture, pp. 208–214 (1984)Google Scholar
  17. 17.
    Rosenberg, A.L.: The Pillars of Computation Theory: State, Encoding Nondeterminism. Universitext Series. Springer, New York (2009).  https://doi.org/10.1007/978-0-387-09639-1 MATHGoogle Scholar
  18. 18.
    Rosenberg, A.L.: Cellular ANTomata. Adv. Complex Syst. 15(6) (2012)Google Scholar
  19. 19.
    Rosenberg, A.L.: Bio-inspired pattern processing by cellular ANTomata. J. Cell. Automata 13(1–2), 53–80 (2018)MathSciNetGoogle Scholar
  20. 20.
    Sirakoulis, G.C., Adamatzky, A. (eds.): Robots and Lattice Automata. ECC, vol. 13. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-10924-4 Google Scholar
  21. 21.
    Spezzano, G., Talia, D.: The CARPET programming environment for solving scientific problems on parallel computers. Parallel Distrib. Comput. Practices 1, 49–61 (1998)Google Scholar
  22. 22.
    Williams, T.: Clock skew and other myths. In: IEEE International Symposium on Asynchronous Circuits and Systems (2003)Google Scholar
  23. 23.
    Wolfram, S. (ed.): Theory and Application of Cellular Automata. Addison-Wesley, Boston (1986)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer and Information ScienceNortheastern UniversityBostonUSA

Personalised recommendations