Advertisement

Genetic Basis of Auditory Verbal Hallucinations in Schizophrenia

  • Anushree Bose
  • Venkataram Shivakumar
  • Ganesan Venkatasubramanian
Chapter

Abstract

This chapter attempts to summarize the existing literature in the domain of genetic basis of auditory hallucinations in schizophrenia. The proposed theoretical bases for hallucinations and their relevant neural substrates in the context of specific genes are discussed—these include language pathways, source monitoring deficits, aberrant salience, and dysregulated emotional valence. The key genes that have been implicated include FOXP2, dystrobrevin-binding protein 1 (DTNBP1), dopamine system genes, cholecystokinin, serotonergic genes, as well as microdeletion of the long arm of 22q11.2 chromosome. Future research with more robust methodology should replicate the present genetic findings as many of the present studies are limited by small sample size. These studies should be aimed at uncovering links between neurobiological parameters of auditory hallucination and gene-gene/gene-environment interactions. The complexity of genetic interactions with respect to the pathophysiology of auditory hallucinations is in need of further discourse and scientific elucidation.

Notes

Acknowledgements

This work is supported by the Department of Science and Technology (Government of India) Research Grant to GV (DST/SJF/LSA-02/2014-5). AB is supported by the Department of Science and Technology (DST/SJF/LSA-02/2014-5).

References

  1. 1.
    Mowry BJ, Nancarrow DJ. Molecular genetics of schizophrenia. Clin Exp Pharmacol Physiol. 2001;28(1–2):66–9.CrossRefGoogle Scholar
  2. 2.
    Cheah SY, Lawford BR, Young RM, Morris CP, Voisey J. Dysbindin (DTNBP1) variants are associated with hallucinations in schizophrenia. Eur Psychiatry. 2015;30(4):486–91.  https://doi.org/10.1016/j.eurpsy.2015.01.008.CrossRefPubMedGoogle Scholar
  3. 3.
    Fanous AH, van den Oord EJ, Riley BP, Aggen SH, Neale MC, O’Neill FA, et al. Relationship between a high-risk haplotype in the DTNBP1 (dysbindin) gene and clinical features of schizophrenia. Am J Psychiatry. 2005;162(10):1824–32.  https://doi.org/10.1176/appi.ajp.162.10.1824.CrossRefPubMedGoogle Scholar
  4. 4.
    Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet. 2008;40(7):827–34.  https://doi.org/10.1038/ng.171.CrossRefPubMedGoogle Scholar
  5. 5.
    Waters F, Allen P, Aleman A, Fernyhough C, Woodward TS, Badcock JC, et al. Auditory hallucinations in schizophrenia and nonschizophrenia populations: a review and integrated model of cognitive mechanisms. Schizophr Bull. 2012;38(4):683–93.CrossRefGoogle Scholar
  6. 6.
    Shergill SS, Murray RM, McGuire PK. Auditory hallucinations: a review of psychological treatments. Schizophr Res. 1998;32(3):137–50.CrossRefGoogle Scholar
  7. 7.
    Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7.  https://doi.org/10.1038/nature13595. http://www.nature.com/nature/journal/v511/n7510/abs/nature13595.html#supplementary-information CrossRefGoogle Scholar
  8. 8.
    Forum SR. In: Current hypotheses. schizophrenia research forum, schizophrenia research forum. 2012. Accessed 27 Feb 2017.Google Scholar
  9. 9.
    Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60(12):1187–92.  https://doi.org/10.1001/archpsyc.60.12.1187.CrossRefPubMedGoogle Scholar
  10. 10.
    Crow TJ. Schizophrenia as the price that Homo sapiens pays for language: a resolution of the central paradox in the origin of the species. Brain Res Rev. 2000;31(2–3):118–29.  https://doi.org/10.1016/S0165-0173(99)00029-6.CrossRefPubMedGoogle Scholar
  11. 11.
    Dean B. Is schizophrenia the price of human central nervous system complexity? Aust N Z J Psychiatry. 2009;43(1):13–24.  https://doi.org/10.1080/00048670802534416.CrossRefPubMedGoogle Scholar
  12. 12.
    Aguilar EJ, Sanjuan J, Garcia-Marti G, Lull JJ, Robles M. MR and genetics in schizophrenia: focus on auditory hallucinations. Eur J Radiol. 2008;67(3):434–9.  https://doi.org/10.1016/j.ejrad.2008.02.046.CrossRefPubMedGoogle Scholar
  13. 13.
    Crespi B, Summers K, Dorus S. Adaptive evolution of genes underlying schizophrenia. Proc Biol Sci. 2007;274(1627):2801–10.  https://doi.org/10.1098/rspb.2007.0876.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature. 2001;413(6855):519–23.  https://doi.org/10.1038/35097076.CrossRefPubMedGoogle Scholar
  15. 15.
    Vargha-Khadem F, Gadian DG, Copp A, Mishkin M. FOXP2 and the neuroanatomy of speech and language. Nat Rev Neurosci. 2005;6(2):131–8.CrossRefGoogle Scholar
  16. 16.
    Sanjuan J, Tolosa A, Gonzalez JC, Aguilar EJ, Perez-Tur J, Najera C, et al. Association between FOXP2 polymorphisms and schizophrenia with auditory hallucinations. Psychiatr Genet. 2006;16(2):67–72.  https://doi.org/10.1097/01.ypg.0000185029.35558.bb.CrossRefPubMedGoogle Scholar
  17. 17.
    Tolosa A, Sanjuan J, Dagnall AM, Molto MD, Herrero N, de Frutos R. FOXP2 gene and language impairment in schizophrenia: association and epigenetic studies. BMC Med Genet. 2010;11:114.  https://doi.org/10.1186/1471-2350-11-114.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jung SM, Jung BJ, Cho JS, Park JM. P.3.a.007 FOXP2 gene possibly associated with Korean schizophrenic patients. Eur Neuropsychopharmacol. 2008;18(Suppl 4):S389.  https://doi.org/10.1016/S0924-977X(08)70560-1 CrossRefGoogle Scholar
  19. 19.
    McCarthy-Jones S, Green MJ, Scott RJ, Tooney PA, Cairns MJ, Wu JQ, et al. Preliminary evidence of an interaction between the FOXP2 gene and childhood emotional abuse predicting likelihood of auditory verbal hallucinations in schizophrenia. J Psychiatr Res. 2014;50:66–72.  https://doi.org/10.1016/j.jpsychires.2013.11.012.CrossRefPubMedGoogle Scholar
  20. 20.
    Johnson MK, Hashtroudi S, Lindsay DS. Source monitoring. Psychol Bull. 1993;114(1):3.CrossRefGoogle Scholar
  21. 21.
    Shakeel MK, Docherty NM. Neurocognitive predictors of source monitoring in schizophrenia. Psychiatry Res. 2012;200(2–3):173–6.  https://doi.org/10.1016/j.psychres.2012.06.014.
  22. 22.
    Nelson B, Whitford TJ, Lavoie S, Sass LA. What are the neurocognitive correlates of basic self-disturbance in schizophrenia?: integrating phenomenology and neurocognition. Part 1 (Source monitoring deficits). Schizophr Res 2014;152(1):12–9.  https://doi.org/10.1016/j.schres.2013.06.022.
  23. 23.
    Biswas AB, Furniss F. Cognitive phenotype and psychiatric disorder in 22q11.2 deletion syndrome: a review. Res Dev Disabil. 2016;53–54:242–57.  https://doi.org/10.1016/j.ridd.2016.02.010
  24. 24.
    Frith C, Friston K, Liddle P, Frackowiak R. PET imaging and cognition in schizophrenia. J R Soc Med. 1992;85(4):222.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Mondino M, Haesebaert F, Poulet E, Suaud-Chagny M-F, Brunelin J. Fronto-temporal transcranial direct current stimulation (tDCS) reduces source-monitoring deficits and auditory hallucinations in patients with schizophrenia. Schizophr Res. 2015;161(2):515–6.CrossRefGoogle Scholar
  26. 26.
    Mugikura S, Abe N, Suzuki M, Ueno A, Higano S, Takahashi S, et al. Hippocampal activation associated with successful external source monitoring. Neuropsychologia. 2010;48(6):1543–50.  https://doi.org/10.1016/j.neuropsychologia.2010.01.021.CrossRefPubMedGoogle Scholar
  27. 27.
    Sommer IE, Clos M, Meijering AL, Diederen KMJ, Eickhoff SB. Resting state functional connectivity in patients with chronic hallucinations. PLoS One. 2012;7(9):e43516.  https://doi.org/10.1371/journal.pone.0043516.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Murphy KC, Scambler P. Velo-cardio-facial syndrome: a model for understanding microdeletion disorders. Cambridge: Cambridge University Press; 2005.CrossRefGoogle Scholar
  29. 29.
    Vorstman JS, Breetvelt EJ, Duijff SN, et al. Cognitive decline preceding the onset of psychosis in patients with 22q11.2 deletion syndrome. JAMA Psychiat. 2015;72(4):377–85.  https://doi.org/10.1001/jamapsychiatry.2014.2671.CrossRefGoogle Scholar
  30. 30.
    Butcher NJ, Chow EWC, Costain G, Karas D, Ho A, Bassett AS. Functional outcomes of adults with 22q11.2 deletion syndrome. Genet Med. 2012;14(10):836–43.CrossRefGoogle Scholar
  31. 31.
    Schneider M, Armando M, Pontillo M, Vicari S, Debbané M, Schultze-Lutter F, et al. Ultra high risk status and transition to psychosis in 22q11 2 deletion syndrome. World Psychiatry. 2016;15(3):259–65.CrossRefGoogle Scholar
  32. 32.
    Cooper S-A, Smiley E, Morrison J, Williamson A, Allan L. Mental ill-health in adults with intellectual disabilities: prevalence and associated factors. Br J Psychiatry. 2007;190(1):27–35.  https://doi.org/10.1192/bjp.bp.106.022483.CrossRefPubMedGoogle Scholar
  33. 33.
    Vorstman JAS, Morcus MEJ, Duijff SN, Klaassen PWJ, Heineman-de Boer JA, Beemer FA, et al. The 22q11.2 deletion in children: high rate of autistic disorders and early onset of psychotic symptoms. J Am Acad Child Adolesc Psychiatry. 2006;45(9):1104–13.  https://doi.org/10.1097/01.chi.0000228131.56956.c1 CrossRefGoogle Scholar
  34. 34.
    Debbané M, Glaser B, David MK, Feinstein C, Eliez S. Psychotic symptoms in children and adolescents with 22q11. 2 deletion syndrome: neuropsychological and behavioral implications. Schizophr Res. 2006;84(2):187–93.CrossRefGoogle Scholar
  35. 35.
    Schneider M, Schaer M, Mutlu AK, Menghetti S, Glaser B, Debbané M, et al. Clinical and cognitive risk factors for psychotic symptoms in 22q11. 2 deletion syndrome: a transversal and longitudinal approach. Eur Child Adolesc Psychiatry. 2014;23(6):425–36.CrossRefGoogle Scholar
  36. 36.
    Shapiro D, Cubells J, Ousley O, Rockers K, Walker E. Prodromal symptoms in adolescents with 22q11. 2 deletion syndrome and schizotypal personality disorder. Schizophr Res. 2011;129(1):20–8.CrossRefGoogle Scholar
  37. 37.
    Stoddard J, Niendam T, Hendren R, Carter C, Simon TJ. Attenuated positive symptoms of psychosis in adolescents with chromosome 22q11. 2 deletion syndrome. Schizophr Res. 2010;118(1):118–21.CrossRefGoogle Scholar
  38. 38.
    Schneider M, Van der Linden M, Menghetti S, Glaser B, Debbané M, Eliez S. Predominant negative symptoms in 22q11. 2 deletion syndrome and their associations with cognitive functioning and functional outcome. J Psychiatr Res. 2014;48(1):86–93.CrossRefGoogle Scholar
  39. 39.
    Debbané M, Glaser B, Eliez S. Encoding and retrieval processes in velo-cardio-facial syndrome (VCFS). Neuropsychology. 2008;22(2):226.CrossRefGoogle Scholar
  40. 40.
    Simon TJ. A new account of the neurocognitive foundations of impairments in space, time, and number processing in children with chromosome 22q11. 2 deletion syndrome. Dev Disabil Res Rev. 2008;14(1):52–8.CrossRefGoogle Scholar
  41. 41.
    Franck N, Rouby P, Daprati E, Daléry J, Marie-Cardine M, Georgieff N. Confusion between silent and overt reading in schizophrenia. Schizophr Res. 2000;41(2):357–64.CrossRefGoogle Scholar
  42. 42.
    Collignon O, Van der Linden M, Larøi F. Source monitoring for actions in hallucination proneness. Cogn Neuropsychiatry. 2005;10(2):105–23.CrossRefGoogle Scholar
  43. 43.
    Debbané M, Linden M, Glaser B, Eliez S. Monitoring of self-generated speech in adolescents with 22q11. 2 deletion syndrome. Br J Clin Psychol. 2010;49(3):373–86.CrossRefGoogle Scholar
  44. 44.
    Flahault A, Schaer M, Ottet M-C, Debbané M, Eliez S. Hippocampal volume reduction in chromosome 22q11.2 deletion syndrome (22q11.2DS): a longitudinal study of morphometry and symptomatology. Psychiatry Res Neuroimaging. 2012;203(1):1–5.  https://doi.org/10.1016/j.pscychresns.2011.09.003. CrossRefGoogle Scholar
  45. 45.
    Kates WR, Miller AM, Abdulsabur N, Antshel KM, Conchelos J, Fremont W, et al. Temporal lobe anatomy and psychiatric symptoms in velocardiofacial syndrome (22q11. 2 deletion syndrome). J Am Acad Child Adolesc Psychiatry. 2006;45(5):587–95.CrossRefGoogle Scholar
  46. 46.
    DeBoer T, Wu Z, Lee A, Simon TJ. Hippocampal volume reduction in children with chromosome 22q11. 2 deletion syndrome is associated with cognitive impairment. Behav Brain Funct. 2007;3(1):54.CrossRefGoogle Scholar
  47. 47.
    Debbané M, Schaer M, Farhoumand R, Glaser B, Eliez S. Hippocampal volume reduction in 22q11. 2 deletion syndrome. Neuropsychologia. 2006;44(12):2360–5.CrossRefGoogle Scholar
  48. 48.
    Chow EW, Ho A, Wei C, Voormolen EH, Crawley AP, Bassett AS. Association of schizophrenia in 22q11. 2 deletion syndrome and gray matter volumetric deficits in the superior temporal gyrus. Am J Psychiatr. 2011;168(5):522–9.CrossRefGoogle Scholar
  49. 49.
    da Silva Alves F, Schmitz N, Bloemen O, van der Meer J, Meijer J, Boot E, et al. White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia. Schizophr Res. 2011;132(1):75–83.CrossRefGoogle Scholar
  50. 50.
    Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, et al. Genetic variation in the 6p22. 3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet. 2002;71(2):337–48.CrossRefGoogle Scholar
  51. 51.
    Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M, et al. Support for association of schizophrenia with genetic variation in the 6p22. 3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet. 2003;72(1):185–90.CrossRefGoogle Scholar
  52. 52.
    Corvin A, Morris D, McGhee K, Schwaiger S, Scully P, Quinn J, et al. Confirmation and refinement of an ‘at-risk’haplotype for schizophrenia suggests the EST cluster, Hs. 97362, as a potential susceptibility gene at the Neuregulin-1 locus. Mol Psychiatry. 2004;9(2):208–12.CrossRefGoogle Scholar
  53. 53.
    Tang J, Zhou J, Fan J, Li X, Shi Y, Gu N, et al. Family-based association study of DTNBP1 in 6p22. 3 and schizophrenia. Mol Psychiatry. 2003;8(8):717.CrossRefGoogle Scholar
  54. 54.
    Van Den Bogaert A, Schumacher J, Schulze TG, Otte AC, Ohlraun S, Kovalenko S, et al. The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am J Hum Genet. 2003;73(6):1438–43.CrossRefGoogle Scholar
  55. 55.
    Kohn Y, Danilovich E, Filon D, Oppenheim A, Karni O, Kanyas K, et al. Linkage disequlibrium in the DTNBP1 (dysbindin) gene region and on chromosome 1p36 among psychotic patients from a genetic isolate in Israel: findings from identity by descent haplotype sharing analysis. Am J Med Genet B Neuropsychiatr Genet. 2004;128(1):65–70.CrossRefGoogle Scholar
  56. 56.
    Kirov G, Ivanov D, Williams NM, Preece A, Nikolov I, Milev R, et al. Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biol Psychiatry. 2004;55(10):971–5.CrossRefGoogle Scholar
  57. 57.
    Weickert C, Straub R, Mcclintock B. Human dysbindin (dtnbp1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry. 2004;61(6):544–55.CrossRefGoogle Scholar
  58. 58.
    Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, et al. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest. 2004;113(9):1353–63.CrossRefGoogle Scholar
  59. 59.
    Tang J, LeGros RP, Louneva N, Yeh L, Cohen JW, Hahn C-G, et al. Dysbindin-1 in dorsolateral prefrontal cortex of schizophrenia cases is reduced in an isoform-specific manner unrelated to dysbindin-1 mRNA expression. Hum Mol Genet. 2009;18(20):3851–63.CrossRefGoogle Scholar
  60. 60.
    Donohoe G, Morris DW, De Sanctis P, Magno E, Montesi JL, Garavan HP, et al. Early visual processing deficits in dysbindin-associated schizophrenia. Biol Psychiatry. 2008;63(5):484–9.CrossRefGoogle Scholar
  61. 61.
    Donohoe G, Frodl T, Morris D, Spoletini I, Cannon DM, Cherubini A, et al. Reduced occipital and prefrontal brain volumes in dysbindin-associated schizophrenia. Neuropsychopharmacology. 2010;35(2):368.CrossRefGoogle Scholar
  62. 62.
    Kapur S, Mizrahi R, Li M. From dopamine to salience to psychosis—linking biology, pharmacology and phenomenology of psychosis. Schizophr Res. 2005;79(1):59–68.  https://doi.org/10.1016/j.schres.2005.01.003. CrossRefGoogle Scholar
  63. 63.
    Gray JA, Feldon J, JNP R, Hemsley DR, Smith AD. The neuropsychology of schizophrenia. Behav Brain Sci. 1991;14(01):1–20.  https://doi.org/10.1017/S0140525X00065055.CrossRefGoogle Scholar
  64. 64.
    Roiser JP, Stephan KE, den Ouden HE, Barnes TR, Friston KJ, Joyce EM. Do patients with schizophrenia exhibit aberrant salience? Psychol Med. 2009;39(2):199–209.  https://doi.org/10.1017/s0033291708003863.CrossRefPubMedGoogle Scholar
  65. 65.
    Cicero DC, Becker TM, Martin EA, Docherty AR, Kerns JG. The role of aberrant salience and self-concept clarity in psychotic-like experiences. J Pers Disord. 2013;4(1):33–42.  https://doi.org/10.1037/a0027361.CrossRefGoogle Scholar
  66. 66.
    Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160(1):13–23.  https://doi.org/10.1176/appi.ajp.160.1.13.CrossRefPubMedGoogle Scholar
  67. 67.
    Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5(6):483–94.  https://doi.org/10.1038/nrn1406.CrossRefPubMedGoogle Scholar
  68. 68.
    Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull. 2009;35(3):549–62.  https://doi.org/10.1093/schbul/sbp006.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Talkowski ME, Bamne M, Mansour H, Nimgaonkar VL. Dopamine genes and schizophrenia: case closed or evidence pending? Schizophr Bull. 2007;33(5):1071–81.  https://doi.org/10.1093/schbul/sbm076.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci. 2006;7(10):818–27.  https://doi.org/10.1038/nrn1993.CrossRefPubMedGoogle Scholar
  71. 71.
    Itokawa M, Arinami T, Futamura N, Hamaguchi H, Toru M. A structural polymorphism of human dopamine D2 receptor, D2(Ser311-->Cys). Biochem Biophys Res Commun. 1993;196(3):1369–75.  https://doi.org/10.1006/bbrc.1993.2404.CrossRefPubMedGoogle Scholar
  72. 72.
    Arinami T, Itokawa M, Enguchi H, Tagaya H, Yano S, Shimizu H, et al. Association of dopamine D2 receptor molecular variant with schizophrenia. Lancet (London, England). 1994;343(8899):703–4.CrossRefGoogle Scholar
  73. 73.
    Glatt SJ, Faraone SV, Tsuang MT. Meta-analysis identifies an association between the dopamine D2 receptor gene and schizophrenia. Mol Psychiatry. 2003;8(11):911–5.  https://doi.org/10.1038/sj.mp.4001321.CrossRefPubMedGoogle Scholar
  74. 74.
    Glatt SJ, Faraone SV, Lasky-Su JA, Kanazawa T, Hwu HG, Tsuang MT. Family-based association testing strongly implicates DRD2 as a risk gene for schizophrenia in Han Chinese from Taiwan. Mol Psychiatry. 2009;14(9):885–93.  https://doi.org/10.1038/mp.2008.30.CrossRefPubMedGoogle Scholar
  75. 75.
    Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008;455(7210):232–6.  https://doi.org/10.1038/nature07229.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Collip D, van Winkel R, Peerbooms O, Lataster T, Thewissen V, Lardinois M, et al. COMT Val158Met-stress interaction in psychosis: role of background psychosis risk. CNS Neurosci Ther. 2011;17(6):612–9.  https://doi.org/10.1111/j.1755-5949.2010.00213.x.CrossRefPubMedGoogle Scholar
  77. 77.
    Shivakumar V, Chhabra H, Subbanna M, Agarwal SM, Bose A, Kalmady SV, et al. Effect of tDCS on auditory hallucinations in schizophrenia: influence of catechol-O-methyltransferase (COMT) Val158Met polymorphism. Asian J Psychiatr. 2015;16:75–7.  https://doi.org/10.1016/j.ajp.2015.05.038.CrossRefPubMedGoogle Scholar
  78. 78.
    Sanjuan J, Toirac I, González JC, Leal C, Moltó MD, Nájera C, et al. A possible association between the CCK-AR gene and persistent auditory hallucinations in schizophrenia. Eur Psychiatry. 2004;19(6):349–53.  https://doi.org/10.1016/j.eurpsy.2004.06.015.CrossRefPubMedGoogle Scholar
  79. 79.
    Beinfeld MC. An introduction to neuronal cholecystokinin. Peptides. 2001;22(8):1197–200.CrossRefGoogle Scholar
  80. 80.
    Vaccarino FJ. Nucleus accumbens dopamine-CCK interactions in psychostimulant reward and related behaviors. Neurosci Biobehav Rev. 1994;18(2):207–14.CrossRefGoogle Scholar
  81. 81.
    Bachus SE, Hyde TM, Herman MM, Egan MF, Kleinman JE. Abnormal cholecystokinin mRNA levels in entorhinal cortex of schizophrenics. J Psychiatr Res. 1997;31(2):233–56.CrossRefGoogle Scholar
  82. 82.
    Zhang X, Zhou D, Zhang P, Wei J. The CCK-A receptor gene possibly associated with positive symptoms of schizophrenia. Mol Psychiatry. 2000;5(3):239.CrossRefGoogle Scholar
  83. 83.
    Kerwin R, Robinson P, Stephenson J. Distribution of CCK binding sites in the human hippocampal formation and their alteration in schizophrenia: a post-mortem autoradiographic study. Psychol Med. 1992;22(01):37–43.CrossRefGoogle Scholar
  84. 84.
    Tachikawa H, Harada S, Kawanishi Y, Okubo T, Shiraishi H. Novel polymorphisms of the human cholecystokinin A receptor gene: an association analysis with schizophrenia. Am J Med Genet. 2000;96(2):141–5.CrossRefGoogle Scholar
  85. 85.
    Tachikawa H, Harada S, Kawanishi Y, Okubo T, Suzuki T. Linked polymorphisms (−333G> T and–286A> G) in the promoter region of the CCK-A receptor gene may be associated with schizophrenia. Psychiatry Res. 2001;103(2):147–55.CrossRefGoogle Scholar
  86. 86.
    Rout JK, Dasgupta A, Singh O, Banerjee U, Basu A. Association of single-nucleotide polymorphism of cholecystokinin receptor A gene with schizophrenia in an Eastern Indian population. Indian J Psychiatry. 2015;57(3):267–71.  https://doi.org/10.4103/0019-5545.166634.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Koefoed P, Hansen TV, Woldbye DP, Werge T, Mors O, Hansen T, et al. An intron 1 polymorphism in the cholecystokinin-A receptor gene associated with schizophrenia in males. Acta Psychiatr Scand. 2009;120(4):281–7.CrossRefGoogle Scholar
  88. 88.
    Minato T, Tochigi M, Kato N, Sasaki T. Association study between the cholecystokinin A receptor gene and schizophrenia in the Japanese population. Psychiatr Genet. 2007;17(2):117–9.  https://doi.org/10.1097/YPG.0b013e328011c02e.CrossRefPubMedGoogle Scholar
  89. 89.
    Leudar I, Thomas P, McNally D, Glinski A. What voices can do with words: pragmatics of verbal hallucinations. Psychol Med. 1997;27(4):885–98.CrossRefGoogle Scholar
  90. 90.
    Honig A, Romme MA, Ensink BJ, Escher SD, Pennings MH, deVries MW. Auditory hallucinations: a comparison between patients and nonpatients. J Nerv Ment Dis. 1998;186(10):646–51.CrossRefGoogle Scholar
  91. 91.
    Daalman K, Boks MP, Diederen KM, de Weijer AD, Blom JD, Kahn RS, et al. The same or different? A phenomenological comparison of auditory verbal hallucinations in healthy and psychotic individuals. J Clin Psychiatry. 2011;72(3):320–5.  https://doi.org/10.4088/JCP.09m05797yel.CrossRefPubMedGoogle Scholar
  92. 92.
    Sommer IE, Daalman K, Rietkerk T, Diederen KM, Bakker S, Wijkstra J, et al. Healthy individuals with auditory verbal hallucinations; who are they? Psychiatric assessments of a selected sample of 103 subjects. Schizophr Bull. 2010;36(3):633–41.  https://doi.org/10.1093/schbul/sbn130.CrossRefPubMedGoogle Scholar
  93. 93.
    Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science (New York, NY). 1996;274(5292):1527–31.CrossRefGoogle Scholar
  94. 94.
    Sanjuan J, Rivero O, Aguilar EJ, González JC, Moltó MD, de Frutos R, et al. Serotonin transporter gene polymorphism (5-HTTLPR) and emotional response to auditory hallucinations in schizophrenia. Int J Neuropsychopharmacol. 2006;9(1):131–3.  https://doi.org/10.1017/S1461145705005559.CrossRefPubMedGoogle Scholar
  95. 95.
    Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, et al. Serotonin transporter genetic variation and the response of the human amygdala. Science (New York, NY). 2002;297(5580):400–3.CrossRefGoogle Scholar
  96. 96.
    Sanjuán J, Lull J, Rivero O, Martí-Bonmatí L, Aguilar E, García G, et al., editors. Serotonin transporter genetic variation modulate amygdala reactivity to emotional stimuli in patients with schizophrenia. Schizophrenia Bulletin. Oxford: Oxford University Press; 2007.Google Scholar
  97. 97.
    Malhotra AK, Goldman D, Mazzanti C, Clifton A, Breier A, Pickar D. A functional serotonin transporter (5-HTT) polymorphism is associated with psychosis in neuroleptic-free schizophrenics. Mol Psychiatry. 1998;3(4):328–32.CrossRefGoogle Scholar
  98. 98.
    Rivero O, Sanjuan J, Aguilar EJ, Gonzalez JC, Molto MD, de Frutos R, et al. Serotonin transporter gene polymorphisms and auditory hallucinations in psychosis. Rev Neurol. 2010;50(6):325–32.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anushree Bose
    • 1
  • Venkataram Shivakumar
    • 1
  • Ganesan Venkatasubramanian
    • 1
  1. 1.InSTAR Program, Schizophrenia Clinic, Department of PsychiatryNational Institute of Mental Health and NeurosciencesBengaluruIndia

Personalised recommendations