Advertisement

Non-contact Welding Technologies: Solid-State Welding

  • Rasheedat Modupe Mahamood
  • Esther Titilayo Akinlabi
Chapter
Part of the Mechanical Engineering Series book series (MES)

Abstract

Solid-state non-contact joining technology is an advanced joining method that does not involve melting of the workpiece and there is no direct contact between the tool and the workpiece. Ultrasonic welding, friction welding, explosive welding and resistance welding are the four non-contact solid-state welding techniques that are discussed in this chapter. The principle of operations, advantages, disadvantages and areas of applications of each of these advanced welding techniques are explained. Some of the research works in this area are also presented.

Keywords

Explosive welding Friction welding Processing parameters Solid-state welding Ultrasonic welding 

Notes

Acknowledgment

This work was supported by the University of Johannesburg research council (URC) fund and University of Ilorin.

References

  1. 1.
    Z.L. Ni, F.X. Ye, Weldability and mechanical properties of ultrasonic welded aluminum to nickel joints. Mater. Lett. 185, 204–207 (2016)CrossRefGoogle Scholar
  2. 2.
    Z.L. Ni, F.X. Ye, Ultrasonic spot welding of Al sheets by enhancing the temperature of weld interface. Mater. Lett. 208, 69–72 (2017)CrossRefGoogle Scholar
  3. 3.
    T.J. Rinker, J. Pan, M. Santella, T.-Y. Pan, Fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens of AZ31 and steel sheets. Eng. Fract. Mech. (2017).  https://doi.org/10.1016/j.engfracmech.2017.11.018
  4. 4.
    M. de Leon, H.-S. Shin, Weldability assessment of Mg alloy (AZ31B) sheets by an ultrasonicspot welding method. J. Mater. Process. Technol. 243, 1–8 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Wang, L. Yang, M. Banu, J. Li, W. Guo, H. Khan, Effect of interfacial preheating on welded joints during ultrasonic composite welding. J. Mater. Process. Technol. 246, 116–122 (2017)CrossRefGoogle Scholar
  6. 6.
    Austin A. Ward, Matthew R. French, Donovan N. Leonard, Zachary C. Cordero, Grain growth during ultrasonic welding of nanocrystalline alloys. J. Mater. Process. Technol. (2017)  https://doi.org/10.1016/j.jmatprotec.2017.11.049
  7. 7.
    D. Ren, K. Zhao, M. Pan, Y. Chang, S. Gang, D. Zhao, Ultrasonic spot welding of magnesium alloy to titanium alloy. Scr. Mater. 126, 58–62 (2017)CrossRefGoogle Scholar
  8. 8.
    D. Zhao, D. Ren, K. Zhao, S. Pan, X. Guo, Effect of welding parameters on tensile strength of ultrasonic spot welded joints of aluminum to steel—By experimentation and artificial neural network. J. Manuf. Process. 30, 63–74 (2017.) ISSN 1526-6125,  https://doi.org/10.1016/j.jmapro.2017.08.009 CrossRefGoogle Scholar
  9. 9.
    U. Parmar, D.H. Pandya, Experimental investigation of ultrasonic welding on non-metallic material. Procedia Technol. 23, 551–557 (2016)CrossRefGoogle Scholar
  10. 10.
    S.I. Minin, Technology of thermal welding with ultrasonic weld joint treatment as applied to NPP formworks. Nucl. Energ. Technol. 3(3), 216–219 (2017.) ISSN 2452-3038MathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Wang, D. Shriver, Y. Li, M. Banu, S. Jack Hu, G. Xiao, J. Arinez, H.-T. Fan, Characterization of weld attributes in ultrasonic welding of short carbon fiber reinforced thermoplastic composites. J. Manuf. Process. 29, 124–132 (2017)CrossRefGoogle Scholar
  12. 12.
    W.X. Chan, S.H. Ng, K.H.H. Li, W.-T. Park, Y.-J. Yoon, Micro-ultrasonic welding using thermoplastic-elastomeric composite film. J. Mater. Process. Technol. 236, 183–188 (2016)CrossRefGoogle Scholar
  13. 13.
    N. Shen, A. Samanta, H. Ding, W.W. Cai, Simulating microstructure evolution of ultrasonic welding of battery tabs. Procedia Manuf. 5, 399–416 (2016)CrossRefGoogle Scholar
  14. 14.
    R. Palanivel, I. Dinaharan, R.F. Laubscher, Assessment of microstructure and tensile behavior of continuous drive friction welded titanium tubes. Mater. Sci. Eng. A 687, 249–258 (2017)CrossRefGoogle Scholar
  15. 15.
    X.Y. Wang, W.Y. Li, T.J. Ma, A. Vairis, Characterisation studies of linear friction welded titanium joints. Mater. Design 116, 115–126 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Kimura, K. Suzuki, M. Kusaka, K. Kaizu, Effect of friction welding condition on joining phenomena, tensile strength, and bend ductility of friction welded joint between pure aluminium and AISI 304 stainless steel. J. Manuf. Process. 25, 116–125 (2017)CrossRefGoogle Scholar
  17. 17.
    O.N. Senkov, D.W. Mahaffey, S.L. Semiatin, Effect of process parameters on process efficiency and inertia friction welding behavior of the superalloys LSHR and Mar-M247. J Mater. Process. Technol. 250, 156–168 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Mogami, T. Matsuda, T. Sano, R. Yoshida, H. Hori, A. Hirose, High-frequency linear friction welding of aluminum alloys. Mater. Design 139, 457–466 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Meisnar, S. Baker, J.M. Bennett, A. Bernad, A. Mostafa, S. Resch, N. Fernandes, A. Norman, Microstructural characterisation of rotary friction welded AA6082 and Ti-6Al-4V dissimilar joints. Mater. Design 132, 188–197 (2017)CrossRefGoogle Scholar
  20. 20.
    F. Sarsilmaz, I. Kirik, S. Batı, Microstructure and mechanical properties of armor 500/AISI2205 steel joint by friction welding. J. Manuf. Process. 28(Part 1), 131–136 (2017)CrossRefGoogle Scholar
  21. 21.
    E.-o. Bouarroudj, S. Chikh, S. Abdi, D. Miroud, Thermal analysis during a rotational friction welding. Appl. Therm. Eng. 110, 1543–1553 (2017)CrossRefGoogle Scholar
  22. 22.
    R. Paventhan, P.R. Lakshminarayanan, V. Balasubramanian, Optimization of friction welding process parameters for joining carbon steel and stainless steel. J. Iron Steel Res. Int. 19(1), 66–71 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Kimura, K. Suzuki, M. Kusaka, K. Kaizu, Effect of friction welding condition on joining phenomena and mechanical properties of friction welded joint between 6063 aluminium alloy and AISI 304 stainless steel. J. Manuf. Process. 26, 178–187 (2017)CrossRefGoogle Scholar
  24. 24.
    R. Winiczenko, O. Goroch, A. Krzyńska, M. Kaczorowski, Friction welding of tungsten heavy alloy with aluminium alloy. J. Mater. Process. Technol. 246, 42–55 (2017)CrossRefGoogle Scholar
  25. 25.
    F.C. Liu, T.W. Nelson, Grain structure evolution, grain boundary sliding and material flow resistance in friction welding of Alloy 718. Mater. Sci. Eng. A. 710, 280–288 (2018)CrossRefGoogle Scholar
  26. 26.
    A.R. McAndrew, P.A. Colegrove, C. Bühr, B.C.D. Flipo, A. Vairis, A literature review of Ti-6Al-4V linear friction welding. Prog. Mater. Sci. 92, 225–257 (2018)CrossRefGoogle Scholar
  27. 27.
    J. Teng, D. Wang, Z. Wang, X. Zhang, Y. Li, J. Cao, X. Wei, F. Yang, Repair of arc welded DH36 joint by underwater friction stitch welding. Mater. Design 118, 266–278 (2017)CrossRefGoogle Scholar
  28. 28.
    R. Kumar, R. Singh, I.P.S. Ahuja, A. Amendola, R. Penna, Friction welding for the manufacturing of PA6 and ABS structures reinforced with Fe particles. Compos. B Eng. 132, 244–257 (2018)CrossRefGoogle Scholar
  29. 29.
    F. Masoumi, L. Thébaud, D. Shahriari, M. Jahazi, J. Cormier, A. Devaux, B.C.D. Flipo, High temperature creep properties of a linear friction welded newly developed wrought Ni-based superalloy. Mater. Sci. Eng. A 710, 214–226 (2018)CrossRefGoogle Scholar
  30. 30.
    C. Meengam, S. Chainarong, P. Muangjunburee, Friction welding of semi-solid metal 7075 aluminum alloy. Mater. Today Proceed. 4(2 Part A), 1303–1311 (2017)CrossRefGoogle Scholar
  31. 31.
    F.F. Wang, W.Y. Li, J. Shen, Q. Wen, J.F. dos Santos, Improving weld formability by a novel dual-rotation bobbin tool friction stir welding. J. Mater. Sci. Technol. (2017).  https://doi.org/10.1016/j.jmst.2017.11.001
  32. 32.
    V. Shokri, A. Sadeghi, M.H. Sadeghi, Thermomechanical modeling of friction stir welding in a Cu-DSS dissimilar joint. J. Manuf. Process. 31, 46–55 (2018)CrossRefGoogle Scholar
  33. 33.
    B. Gülenç, Y. Kaya, A. Durgutlu, İ.T. Gülenç, M.S. Yıldırım, N. Kahraman, Production of wire reinforced composite materials through explosive welding. Arch. Civil Mech. Eng. 16(1), 1–8 (2016)CrossRefGoogle Scholar
  34. 34.
    D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, P. Zieba, Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater. Design 91, 80–89 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Loureiro, R. Mendes, J.B. Ribeiro, R.M. Leal, I. Galvão, Effect of explosive mixture on quality of explosive welds of copper to aluminium. Mater. Design 95, 256–267 (2016)CrossRefGoogle Scholar
  36. 36.
    D. Boroński, M. Kotyk, P. Maćkowiak, L. Śnieżek, Mechanical properties of explosively welded AA2519-AA1050-Ti6Al4V layered material at ambient and cryogenic conditions. Mater. Design 133, 390–403 (2017)CrossRefGoogle Scholar
  37. 37.
    D.V. Lazurenko, I.A. Bataev, V.I. Mali, A.A. Bataev, I.N. Maliutina, V.S. Lozhkin, M.A. Esikov, A.M.J. Jorge, Explosively welded multilayer Ti-Al composites: Structure and transformation during heat treatment. Mater. Design 102, 122–130 (2016)CrossRefGoogle Scholar
  38. 38.
    I.A. Bataev, T.S. Ogneva, A.A. Bataev, V.I. Mali, M.A. Esikov, D.V. Lazurenko, Y. Guo, A.M. Jorge Junior, Explosively welded multilayer Ni–Al composites. Mater. Design 88, 1082–1087 (2015)CrossRefGoogle Scholar
  39. 39.
    M. Prażmowski, D. Rozumek, H. Paul, Static and fatigue tests of bimetal Zr-steel made by explosive welding. Eng. Failure Anal. 75, 71–81 (2017)CrossRefGoogle Scholar
  40. 40.
    T. Zhang, W. Wang, W. Zhang, Y. Wei, X. Cao, Z. Yan, J. Zhou, Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding. J. Alloy. Compounds (2017).  https://doi.org/10.1016/j.jallcom.2017.11.285, ISSN 0925-8388
  41. 41.
    Q. Chu, M. Zhang, J. Li, Y. Cheng, Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Mater. Sci. Eng. A 689, 323–331 (2017)CrossRefGoogle Scholar
  42. 42.
    G.H.S.F.L. Carvalho, R. Mendes, R.M. Leal, I. Galvão, A. Loureiro, Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds. Mater. Design 122, 172–183 (2017)CrossRefGoogle Scholar
  43. 43.
    D.M. Fronczek, R. Chulist, Z. Szulc, J. Wojewoda-Budka, Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads. Mater. Lett. 198, 160–163 (2017)CrossRefGoogle Scholar
  44. 44.
    V.I. Lysak, S.V. Kuzmin, Energy balance during explosive welding. J. Mater. Process. Technol. 222, 356–364 (2015)CrossRefGoogle Scholar
  45. 45.
    S. Mróz, A. Gontarz, K. Drozdowski, H. Bala, P. Szota. Forging of Mg/Al bimetallic handle using explosive welded feedstock. Archives of Civil and Mechanical Engineering, 18(2), 401–412 (2018)CrossRefGoogle Scholar
  46. 46.
    S. Mróz, A. Gontarz, K. Drozdowski, H. Bala, P. Szota, Forging of Mg/Al bimetallic handle using explosive welded feedstock. Arch. Civil Mech. Eng. 18(2), 401–412 (2018)CrossRefGoogle Scholar
  47. 47.
    C. Choi, P. Tan, D. Ruan, B. Dixon, A new concept of universal substitutive explosive welding. Mater. Design 115, 393–403 (2017)CrossRefGoogle Scholar
  48. 48.
    C.-g. Shi, X. Yang, Y.-h. Ge, J. You, H.-b. Hou, Lower limit law of welding windows for explosive welding of dissimilar metals. J. Iron Steel Res. Int. 24(8), 852–857 (2017)CrossRefGoogle Scholar
  49. 49.
    P. Corigliano, V. Crupi, E. Guglielmino, A.M. Sili, Full-field analysis of AL/FE explosive welded joints for shipbuilding applications. Marine Struct. 57, 207–218 (2018)CrossRefGoogle Scholar
  50. 50.
    I.A. Bataev, D.V. Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo, A.M. Jorge, High cooling rates and metastable phases at the interfaces of explosively welded materials. Acta Materialia 135, 277–289 (2017)CrossRefGoogle Scholar
  51. 51.
    A. Loureiro, R. Mendes, J.B. Ribeiro, R.M. Leal, Effect of explosive ratio on explosive welding quality of copper to aluminium. Ciência Tecnologia dos Materiais 29(1), e46–e50 (2017)CrossRefGoogle Scholar
  52. 52.
    Z. Guoyin, S. Xi, Z. Jinghua, Interfacial bonding mechanism and mechanical performance of Ti/steel bimetallic clad sheet produced by explosive welding and annealing. Rare Metal Mater. Eng. 46(4), 906–911 (2017)CrossRefGoogle Scholar
  53. 53.
    X. Li, H. Ma, Z. Shen, Research on explosive welding of aluminum alloy to steel with dovetail grooves. Mater. Design 87, 815–824 (2015)CrossRefGoogle Scholar
  54. 54.
    S.H.I. Chang-gen, W.A.N.G. Yu, Z.H.A.O. Lin-sheng, H.O.U. Hong-bao, G.E. Yu-heng, Detonation mechanism in double vertical explosive welding of stainless steel/steel. J. Iron Steel Res. Int. 22(10), 949–953 (2015)CrossRefGoogle Scholar
  55. 55.
    D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, S. Kac, N. Schell, Z. Kania, Z. Szulc, J. Wojewoda-Budka, Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing. Mater. Design 130, 120–130 (2017)CrossRefGoogle Scholar
  56. 56.
    M.M. Hoseini Athar, B. Tolaminejad, Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding. Mater. Design 86, 516–525 (2015)CrossRefGoogle Scholar
  57. 57.
    L. Liu, Y.-F. Jia, F.-Z. Xuan, Gradient effect in the waved interfacial layer of 304L/533B bimetallic plates induced by explosive welding. In Materials Science and Engineering: A, Volume 704, 493–502 (2017)CrossRefGoogle Scholar
  58. 58.
    S.M. Manladan, F. Yusof, S. Ramesh, Y. Zhang, Z. Luo, Z. Ling, Microstructure and mechanical properties of resistance spot welded in welding-brazing mode and resistance element welded magnesium alloy/austenitic stainless steel joints. J. Mater. Process. Technol. 250, 45–54 (2017)CrossRefGoogle Scholar
  59. 59.
    Z. Mikno, A. Pilarczyk, M. Korzeniowski, P. Kustroń, A. Ambroziak, Analysis of resistance welding processes and expulsion of liquid metal from the weld nugget. Arch. Civil Mech. Eng. 18(2), 522–531 (2018)CrossRefGoogle Scholar
  60. 60.
    Q. Li, Y. Zhu, J. Guo, Microstructure and mechanical properties of resistance-welded NiTi/stainless steel joints. J. Mater. Process. Technol. 249, 538–548 (2017)CrossRefGoogle Scholar
  61. 61.
    H.C. Lin, C.A. Hsu, C.S. Lee, T.Y. Kuo, S.L. Jeng, Effects of zinc layer thickness on resistance spot welding of galvanized mild steel. J. Mater. Process. Technol. 251, 205–213 (2018)CrossRefGoogle Scholar
  62. 62.
    E. Geslain, P. Rogeon, T. Pierre, C. Pouvreau, L. Cretteur, Coating effects on contact conditions in resistance spot weldability. J. Mater. Process. Technol. 253, 160–167 (2018)CrossRefGoogle Scholar
  63. 63.
    X. Wan, Y. Wang, D. Zhao, Y.A. Huang, A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding. Mech. Syst. Signal Process. 93, 634–644 (2017)CrossRefGoogle Scholar
  64. 64.
    B. Xing, Y. Xiao, Q.H. Qin, Characteristics of shunting effect in resistance spot welding in mild steel based on electrode displacement. Measurement 115, 233–242 (2018)CrossRefGoogle Scholar
  65. 65.
    X. Wan, Y. Wang, D. Zhao, Y.A. Huang, Z. Yin, Weld quality monitoring research in small scale resistance spot welding by dynamic resistance and neural network. Measurement 99, 120–127 (2017)CrossRefGoogle Scholar
  66. 66.
    N. Koutras, I. Fernandez Villegas, R. Benedictus, Influence of temperature on the strength of resistance welded glass fibre reinforced PPS joints. Compos. A Appl. Sci. Manuf. 105, 57–67 (2018)CrossRefGoogle Scholar
  67. 67.
    S. Wu, B. Ghaffari, E. Hetrick, M. Li, Q. Liu, Z. Jia, Thermo-mechanically affected zone in AA6111 resistance spot welds. J. Mater. Process. Technol. 249, 463–470 (2017)CrossRefGoogle Scholar
  68. 68.
    S.S. Rao, R. Chhibber, K.S. Arora, M. Shome, Resistance spot welding of galvannealed high strength interstitial free steel. J. Mater. Process. Technol. 246, 252–261 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rasheedat Modupe Mahamood
    • 1
    • 2
  • Esther Titilayo Akinlabi
    • 1
  1. 1.Department of Mechanical Engineering Science, Faculty of Engineering and the Built EnvironmentUniversity of Johannesburg, Auckland Park Kingsway Campus, Auckland ParkJohannesburgSouth Africa
  2. 2.Department of Mechanical EngineeringFaculty of Engineering, University of IlorinIlorinNigeria

Personalised recommendations