Advanced Mechanical Cutting Process

  • Rasheedat Modupe Mahamood
  • Esther Titilayo Akinlabi
Part of the Mechanical Engineering Series book series (MES)


The need of advanced materials required in the modern-day technology and the demand of miniaturisation from different kinds of engineering applications have led to the development of cutting processes that are able to offset the limitations encountered in the conventional manufacturing processes. Advanced mechanical cutting processes such as waterjet machining, abrasive waterjet machining and ultrasonic machining are important advanced machining processes that are contactless and tool-less processes used to cut advanced materials and in micromachining where the conventional machining process becomes prohibitive. These advanced mechanical cutting processes are analysed in this chapter. The working principles of these cutting processes are described with the advantages, disadvantages and areas of application presented. Some of the research works in this field are also presented in this chapter.


Abrasive jet machining Abrasive waterjet machining Process parameters Ultrasonic machining Waterjet machining 



This work was supported by the University of Johannesburg research council (URC) and University of Ilorin.


  1. 1.
    F. Boud, L.F. Loo, P.K. Kinnell, The impact of plain waterjet machining on the surface integrity of aluminium 7475. Procedia CIRP 13, 382–386 (2014)CrossRefGoogle Scholar
  2. 2.
    D.A. Axinte, D.S. Srinivasu, M.C. Kong, P.W. Butler-Smith, Abrasive waterjet cutting of polycrystalline diamond: A preliminary investigation. Int. J. Mach. Tools Manuf. 49(10), 797–803 (2009)CrossRefGoogle Scholar
  3. 3.
    J. Schwartzentruber, M. Papini, Abrasive waterjet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 219, 143–154 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Wang, K. Shimada, M. Mizutani, T. Kuriyagawa, Effects of abrasive material and particle shape on machining performance in micro ultrasonic machining. Precis. Eng. 51, 373–387 (2018). CrossRefGoogle Scholar
  5. 5.
    A. Kumar, S.S. Hiremath, Improvement of geometrical accuracy of micro holes machined through micro abrasive jet machining. Procedia CIRP 46, 47–50 (2016)CrossRefGoogle Scholar
  6. 6.
    M.C. Kong, D. Axinte, W. Voice, Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide. J. Mater. Process. Technol. 210, 573–584 (2010)CrossRefGoogle Scholar
  7. 7.
    D.S. Srinivasu, D.A. Axinte, Surface integrity analysis of plain waterjet milled advanced engineering composite materials. Procedia CIRP 13, 371–376 (2014)CrossRefGoogle Scholar
  8. 8.
    M.C. Kong, D. Axintea, W. Voice, Challenges in using waterjet machining of NiTi shape memory alloys: An analysis of controlled-depth milling. J. Mater. Process. Technol. 211, 959–971 (2011)CrossRefGoogle Scholar
  9. 9.
    G. Aydin, S. Kaya, I. Karakurt, Utilization of solid-cutting waste of granite as an alternative abrasive in abrasive waterjet cutting of marble. J. Clean. Prod. 159, 241–247 (2017)CrossRefGoogle Scholar
  10. 10.
    J. Schwartzentruber, J.K. Spelt, M. Papini, Prediction of surface roughness in abrasive waterjet trimming of fiber reinforced polymer composites. Int. J. Mach. Tools Manuf. 122, 1–17 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Mieszala, P. Lozano Torrubia, D.A. Axinte, J.J. Schwiedrzik, Y. Guo, S. Mischler, J. Michler, L. Philippe, Erosion mechanisms during abrasive waterjet machining: Model microstructures and single particle experiments. J Mater. Process. Tech. 247, 92–102 (2017)CrossRefGoogle Scholar
  12. 12.
    L. Huang, J. Folkes, P. Kinnell, P.H. Shipway, Mechanisms of damage initiation in a titanium alloy subjected to water droplet impact during ultra-high pressure plain waterjet erosion. J. Mater. Process. Technol. 212(9), 1906–1915 (2012)CrossRefGoogle Scholar
  13. 13.
    P. Lozano Torrubia, D. Axinte, J. Billingham, Stochastic modelling of abrasive waterjet footprints using finite element analysis. Int. J. Mach. Tools Manuf. 95, 39–51 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Billingham, C.B. Miron, D.A. Axinte, M.C. Kong, Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets. Part II. Overlapped single and multiple straight paths. Int. J. Mach. Tools Manuf. 68, 30–39 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Anwar, D.A. Axinte, A.A. Becker, Finite element modelling of overlapping abrasive waterjet milled footprints. Wear 303(1–2), 426–436 (2013)CrossRefGoogle Scholar
  16. 16.
    U. Çaydaş, A. Hasçalık, A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 202(1–3), 574–582 (2008)CrossRefGoogle Scholar
  17. 17.
    P. Hlaváček, J. Valíček, S. Hloch, M. Greger, J. Foldyna, Ž. Ivandić, L. Sitek, M. Kušnerová, M. Zeleńák, Measurement of fine grain copper surface texture created by abrasive water jet cutting. Strojarstvo: časopis za teoriju i praksu u strojarstvu 51(4), 273–279 (2009)Google Scholar
  18. 18.
    R. Balz, R. Mokso, C. Narayanan, D.A. Weiss, K.C. Heiniger, Ultra-fast X-ray particle velocimetry measurements within an abrasive water jet. Exp. Fluids 54(3), 1476 (2013)CrossRefGoogle Scholar
  19. 19.
    K. Nagendra Prasad, D. John Basha, K.C. Varaprasad, Experimental investigation and analysis of process parameters in abrasive jet machining of Ti-6Al-4V alloy using Taguchi method. Mater. Today: Proc. 4, 10894–10903 (2017)CrossRefGoogle Scholar
  20. 20.
    D.V. Srikanth, M. Sreenivasa Rao, Application of Taguchi & response surface methodology in optimization for machining of ceramics with abrasive jet machining. Mater. Today: Proc. 2, 3308–3317 (2015)CrossRefGoogle Scholar
  21. 21.
    N. Shafiei, H. Getu, A. Sadeghian, M. Papini, Computer simulation of developing abrasive jet machined profiles including particle interference. J. Mater. Process. Technol. 209, 4366–4378 (2009)CrossRefGoogle Scholar
  22. 22.
    D.V. Srikantha, M.S. Rao, Metal removal and kerf analysis in abrasive jet drilling of glass sheets. Procedia Mater. Sci. 6, 1303–1311 (2014)CrossRefGoogle Scholar
  23. 23.
    M. Wakuda, Y. Yamauchi, S. Kanzaki, Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials. J. Int. Soc. Precis. Eng. Nanotechnol. 26, 193–198 (2002)Google Scholar
  24. 24.
    L. Zhang, T. Kuriyagawa, Y. Yasutomi, Z. Ji, Investigation into micro abrasive intermittent jet machining. Int J Mach Tool Manu 45, 873–879 (2005)CrossRefGoogle Scholar
  25. 25.
    R. Balasubramaniam, J. Krishnan, N. Ramakrishnan, A study on the shape of the surface generated by abrasive jet machining. J. Mater. Process. Technol. 121, 102–106 (2002)CrossRefGoogle Scholar
  26. 26.
    N.S. Pawar, R.R. Lakhe, R.L. Shrivastava, Validation of experimental work by using cubic polynomial models for sea sand as an abrasive material in silicon nozzle in abrasive jet machining process. Mater. Today: Proc. 2, 1927–1933 (2015)CrossRefGoogle Scholar
  27. 27.
    A. Nouhi, K. Kowsari, J.K. Spelt, M. Papini, Abrasive jet machining of channels on highly-curved glass and PMMA surfaces. Wear 356–357, 30–39 (2016)CrossRefGoogle Scholar
  28. 28.
    J.-H. Ke, F.-C. Tsai, J.-C. Hung, B.-H. Yan, Characteristics study of flexible magnetic abrasive in abrasive jet machining. Procedia CIRP 1, 679–680 (2012)CrossRefGoogle Scholar
  29. 29.
    A.G. Gradeen, J.K. Spelt, M. Papini, Cryogenic abrasive jet machining of polydimethylsiloxane at different temperatures. Wear 274–275, 335–344 (2012)CrossRefGoogle Scholar
  30. 30.
    A. Kumar, S.S. Hiremath, Machining of micro-holes on Sodalime glass using developed micro-abrasive jet machine (μ-AJM). Procedia Technol. 25, 1234–1241 (2016)CrossRefGoogle Scholar
  31. 31.
    M.R. Sookhak Lari, A. Ghazavi, M. Papini, A rotating mask system for sculpting of three-dimensional features using abrasive jet micro-machining. J. Mater. Process. Technol. 243, 62–74 (2017)CrossRefGoogle Scholar
  32. 32.
    R. Haj Mohammad Jafar, H. Nouraei, M. Emamifar, M. Papini, J.K. Spelt, Erosion modeling in abrasive slurry jet micro-machining of brittle materials. J. Manuf. Process. 17, 127–140 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Ally, J.K. Spelt, M. Papini, Prediction of machined surface evolution in the abrasive jet micro-machining of metals. Wear 292–293, 89–99 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Fan, C.Y. Wang, J. Wang, Modelling the erosion rate in micro abrasive air jet machining of glasses. Wear 266(9–10), 968–974 (2009)CrossRefGoogle Scholar
  35. 35.
    D. Lv, H. Wang, Y. Tang, Y. Huang, Z. Li, Influences of vibration on surface formation in rotary ultrasonic machining of glass BK7. Precis. Eng. 37, 839–848 (2013)CrossRefGoogle Scholar
  36. 36.
    F. Feucht, J. Ketelaer, A. Wolff, M. Mori, M. Fujishima, Latest machining technologies of hard-to-cut materials by ultrasonic machine tool. Procedia CIRP 14, 148–152 (2014)CrossRefGoogle Scholar
  37. 37.
    D. Goswami, S. Chakraborty, Parametric optimization of ultrasonic machining process using gravitational search and fireworks algorithms. Ain Shams Eng. J. 6, 315–331 (2015)CrossRefGoogle Scholar
  38. 38.
    W.L. Cong, Z.J. Pei, X. Sun, C.L. Zhang, Rotary ultrasonic machining of CFRP: A mechanistic predictive model for cutting force. Ultrasonics 54, 663–675 (2014)CrossRefGoogle Scholar
  39. 39.
    J. Wang, K. Shimada, M. Mizutani, T. Kuriyagawa, Tool wear mechanism and its relation to material removal in ultrasonic machining. Wear 394–395, 96–108 (2018)CrossRefGoogle Scholar
  40. 40.
    J. Wang, J. Zhang, P. Feng, Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites. Compos. Part B 129, 233–242 (2017)CrossRefGoogle Scholar
  41. 41.
    J. Wang, J. Zhang, P. Feng, P. Guo, Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: A critical review. Ceram. Int. 44(2), 1227–1239 (2018)CrossRefGoogle Scholar
  42. 42.
    R. Singh, J.S. Khamba, Ultrasonic machining of titanium and its alloys: A review. J. Mater. Process. Technol. 173(2), 125–135 (2006)CrossRefGoogle Scholar
  43. 43.
    N. Chandra, G.C. Lim, H.Y. Zheng, Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics. Ultrasonics 52(5), 605–613 (2012)CrossRefGoogle Scholar
  44. 44.
    L. DeFu, W.L. Cong, Z.J. Pei, Y.J. Tang, A cutting force model for rotary ultrasonic machining of brittle materials. Int. J. Mach. Tools Manuf. 52(1), 77–84 (2012)CrossRefGoogle Scholar
  45. 45.
    F. Ning, H. Wang, W. Cong, P.K.S.C. Fernando, A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites. Ultrasonics 76, 44–51 (2017)CrossRefGoogle Scholar
  46. 46.
    J. Wang, P. Feng, J. Zhang, W. Cai, H. Shen, Investigations on the critical feed rate guaranteeing the effectiveness of rotary ultrasonic machining. Ultrasonics 74, 81–88 (2017)CrossRefGoogle Scholar
  47. 47.
    Z. Li, S. Yuan, C. Zhang, Research on the rotary ultrasonic facing milling of ceramic matrix composites. Procedia CIRP 56, 428–433 (2016)CrossRefGoogle Scholar
  48. 48.
    S. Agarwal, On the mechanism and mechanics of material removal in ultrasonic machining. Int. J. Mach. Tools Manuf. 96, 1–14 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rasheedat Modupe Mahamood
    • 1
    • 2
  • Esther Titilayo Akinlabi
    • 1
  1. 1.Department of Mechanical Engineering Science, Faculty of Engineering and the Built EnvironmentUniversity of Johannesburg, Auckland Park Kingsway Campus, Auckland ParkJohannesburgSouth Africa
  2. 2.Department of Mechanical EngineeringFaculty of Engineering, University of IlorinIlorinNigeria

Personalised recommendations