Advertisement

Electrothermal Cutting Process

  • Rasheedat Modupe Mahamood
  • Esther Titilayo Akinlabi
Chapter
Part of the Mechanical Engineering Series book series (MES)

Abstract

Electrothermal cutting processes employ a combination of electrical energy and heat to achieve material removal process. Many materials will burn when subjected to heat. By bringing materials into melting and vaporisation state, material cutting can be achieved. Electrothermal machining is an advanced machining process which is contact-less and hence does not require the physical contact of the tool and the workpiece making cutting forces negligible. There are different types of electrothermal machining processes such as electrical discharged machining, electron beam machining and laser beam machining, which are explained in this chapter. This advanced machining process however uses thermal energy to achieve the desired cutting process but does not create heat damage to the material when compared to the similar conventional cutting processes. The principles of operation of each of these processes are explained in this chapter with their advantages, limitations and areas of application. Some research works in this field are also presented.

Keywords

Electrical discharge machining Electron beam machining Ion beam machining Laser beam machining Plasma arc machining 

Notes

Acknowledgments

This work was supported by the University of Johannesburg research council (URC) and University of Ilorin.

References

  1. 1.
    T. Muthuramalingam, B. Mohan, A review on influence of electrical process parameters in EDM process. Arch. Civ. Mech. Eng. 15, 87–94 (2015)CrossRefGoogle Scholar
  2. 2.
    V. Verma, R. Sahu, Process parameter optimization of die-sinking EDM on titanium grade – V alloy (Ti6Al4V) using full factorial design approach. Mater. Today: Proc. 4, 1893–1899 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Vinoth Kumar, M. Pradeep Kumar, Machining process parameter and surface integrity in conventional EDM and cryogenic EDM of Al–SiCp MMC. J. Manuf. Process. 20 (, 70–78 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Tripathy, D.K. Tripathy, Surface characterization and multi-response optimization of EDM process parameters using powder mixed dielectric. Mater. Today: Proc. 4, 2058–2067 (2017)CrossRefGoogle Scholar
  5. 5.
    Mohammadreza Shabgard, Mirsadegh Seyedzavvar – Samad Nadimi Bavil Oliaei. Influence of input parameters on the characteristics of the EDM process. J. Mech. Eng. 57(2011)9, 689–696CrossRefGoogle Scholar
  6. 6.
    M.R. Mahamood, Laser Metal Deposition Process of Metals, Alloys, and Composite Materials (Springer, Cham, 2018)CrossRefGoogle Scholar
  7. 7.
    G. Chryssolouris, Laser Machining – Theory and Practice (Mechanical Engineering Series) (Springer – Verlag, New York, 1991)Google Scholar
  8. 8.
    K. Sugioka, M. Meunier, A. Pique, Laser Precision Microfabrication (Springer-Verlag, Berlin, 2010)CrossRefGoogle Scholar
  9. 9.
    A. Sharma, V. Yadava, Experimental analysis of Nd-YAG laser cutting of sheet materials – A review. Opt. Laser Technol. 98, 264–280 (2018)CrossRefGoogle Scholar
  10. 10.
    A.K. Dubey, V. Yadava, Laser beam machining—A review. Int J Mach Tool Manu 48, 609–628 (2008)CrossRefGoogle Scholar
  11. 11.
    E. Williams, N. Lavery, Laser processing of bulk metallic glass: A review. J. Mater. Process. Tech. 247, 73–91 (2017)CrossRefGoogle Scholar
  12. 12.
    F.O. Olsen, L. Alting, Pulsed laser materials processing, Nd-YAG versus CO2 lasers. Ann. CIRP 44(1), 141–145 (1995)CrossRefGoogle Scholar
  13. 13.
    D. Petring, Laser Cutting, LIA Handbook of Laser Materials Processing (Laser Institute of America, Orlando, 2001)Google Scholar
  14. 14.
    S. Nisar, M.A. Sheikh, L. Li, A.J. Pinkerton, S. Safdar, The effect of laser beam geometry on cut path deviation in diode laser chip-free cutting of glass. J. Manuf. Sci. Eng. Trans. ASME 132(011002), 1–9 (2010)Google Scholar
  15. 15.
    C.H. Tsai, C.J. Chen, Application of iterative path revision technique for laser cutting with controlled fracture. Opt. Lasers Eng. 41, 189–204 (2004)CrossRefGoogle Scholar
  16. 16.
    C.H. Tsai, H.W. Chen, Laser cutting of thick ceramic substrates by controlled fracture technique. J. Mat. Proc. Technol. 136, 166–173 (2003)CrossRefGoogle Scholar
  17. 17.
    A.K. Dubey, V. Yadava, Laser beam machining – A review. Int. J. Mach. Tools Manuf. 48, 609–628 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Gbordzoe, S. Yarmolenko, S. Kanakaraj, M.R. Haase, N.T. Alvarez, R. Borgemenke, P.K. Adusei, V. Shanov, Effects of laser cutting on the structural and mechanical properties of carbon nanotube assemblages. Mater. Sci. Eng. B 223, 143–152 (2017)CrossRefGoogle Scholar
  19. 19.
    K. Jarosz, P. Löschner, P. Niesłony, Effect of cutting speed on surface quality and heat-affected zone in laser cutting of 316L stainless steel. Procedia Eng. 149, 155–162 (2016)CrossRefGoogle Scholar
  20. 20.
    O.S. Bursi, M. D'Incau, G. Zanon, S. Raso, P. Scardi, Laser and mechanical cutting effects on the cut-edge properties of steel S355N. J. Constr. Steel Res. 133, 181–191 (2017)CrossRefGoogle Scholar
  21. 21.
    C. Mao, X. Sun, H. Huang, C. Kang, M. Zhang, Y. Wu, Characteristics and removal mechanism in laser cutting of cBN–WC–10Co composites. J. Mater. Process. Technol. 230, 42–49 (2016)CrossRefGoogle Scholar
  22. 22.
    D.F. Pessoa, P. Herwig, A. Wetzig, M. Zimmermann, Influence of surface condition due to laser beam cutting on the fatigue behavior of metastable austenitic stainless steel AISI 304. Eng. Fract. Mech. 185, 227–240 (2017).  https://doi.org/10.1016/j.engfracmech.2017.05.040 CrossRefGoogle Scholar
  23. 23.
    G. Thawari, J.K. Sarin Sundar, G. Sundararajan, S.V. Joshi, Influence of process parameters during pulsed Nd-YAG laser cutting of nickel-base superalloys. J. Mat. Proc. Technol. 170, 222–239 (2005)CrossRefGoogle Scholar
  24. 24.
    D. Lee, J. Mazumder, Effects of momentum transfer on sizing of current collectors for lithium-ion batteries during laser cutting. Opt. Laser Technol. 99, 315–325 (2018)CrossRefGoogle Scholar
  25. 25.
    M.P. Sealy, Y.B. Guo, J.F. Liu, C. Li, Pulsed laser cutting of magnesium-calcium for biodegradable stents. Procedia CIRP 42, 67–72 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Ozaki, M.Q. Le, H. Kawakami, J. Suzuki, Y. Uemura, Y. Doi, M. Mizutani, Y. Kawahito, Real-time observation of laser cutting fronts by X-ray transmission. J. Mater. Process. Technol. 237, 181–187 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Madić, J. Antucheviciene, M. Radovanović, D. Petković, Determination of laser cutting process conditions using the preference selection index method. Opt. Laser Technol. 89, 214–220 (2017)CrossRefGoogle Scholar
  28. 28.
    O. Anicic, S. Jović, H. Skrijelj, B. Nedić, Prediction of laser cutting heat affected zone by extreme learning machine. Opt. Lasers Eng. 88, 1–4 (2017)CrossRefGoogle Scholar
  29. 29.
    A.B. Lopez, E. Assunção, L. Quintino, J. Blackburn, A. Khan, High-power fiber laser cutting parameter optimization for nuclear decommissioning. Nucl. Eng. Technol. 49(4), 865–872 (2017)CrossRefGoogle Scholar
  30. 30.
    J.S. Shin, S.Y. Oh, H. Park, C.-M. Chung, S. Seon, T.-S. Kim, L. Lee, J. Lee, Laser cutting of steel plates up to 100 mm in thickness with a 6-kW fiber laser for application to dismantling of nuclear facilities. Opt. Lasers Eng. 100, 98–104 (2018)CrossRefGoogle Scholar
  31. 31.
    A. Lopez, E. Assunção, I. Pires, L. Quintino, Secondary emissions during fiber laser cutting of nuclear material. Nucl. Eng. Des. 315, 69–76 (2017)CrossRefGoogle Scholar
  32. 32.
    D. Lee, J. Cho, C.H. Kim, S.H. Lee, Application of laser spot cutting on spring contact probe for semiconductor package inspection. Opt. Laser Technol. 97, 90–96 (2017)CrossRefGoogle Scholar
  33. 33.
    G.C. Rodrigues, C. Decroos, J.R. Duflou, Considerations on assist gas jet optimization in laser cutting with direct diode laser. Procedia Eng. 183, 37–44 (2017)CrossRefGoogle Scholar
  34. 34.
    M. Schleier, B. Adelmann, B. Neumeier, R. Hellmann, Burr formation detector for fiber laser cutting based on a photodiode sensor system. Opt. Laser Technol. 96, 13–17 (2017)CrossRefGoogle Scholar
  35. 35.
    J. Zhao, P. Cheng, A lattice Boltzmann method for simulating laser cutting of thin metal plates. Int. J. Heat Mass Transfer 110, 94–103 (2017)CrossRefGoogle Scholar
  36. 36.
    B.S. Yilbas, M.M. Shaukat, F. Ashraf, Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process. Opt. Laser Technol. 93, 67–73 (2017)CrossRefGoogle Scholar
  37. 37.
    A. Riveiro, F. Quintero, J. del Val, M. Boutinguiza, R. Comesaña, F. Lusquiños, J. Pou, Laser cutting using off-axial supersonic rectangular nozzles. Precis. Eng. 51, 78–87 (2018).  https://doi.org/10.1016/j.precisioneng.2017.07.013 CrossRefGoogle Scholar
  38. 38.
    K. Krot, E. Chlebus, B. Kuźnicka, Laser cutting of composite sandwich structures. Arch. Civ. Mech. Eng. 17(3), 545–554 (2017)CrossRefGoogle Scholar
  39. 39.
    A.J. Guerra, J. Farjas, J. Ciurana, Fibre laser cutting of polycaprolactone sheet for stents manufacturing: A feasibility study. Opt. Laser Technol. 95, 113–123 (2017)CrossRefGoogle Scholar
  40. 40.
    B.S. Yilbas, S.S. Akhtar, C. Karatas, Laser circular cutting of Kevlar sheets: Analysis of thermal stress filed and assessment of cutting geometry. Opt. Laser Technol. 96, 180–189 (2017)CrossRefGoogle Scholar
  41. 41.
    J.S. Shin, S.Y. Oh, H. Park, C.-M. Chung, S. Seon, T.-S. Kim, L. Lee, B.-S. Choi, J.-K. Moon, High-speed fiber laser cutting of thick stainless steel for dismantling tasks. Opt. Laser Technol. 94, 244–247 (2017)CrossRefGoogle Scholar
  42. 42.
    T.D. Yuzvinsky, A.M. Fennimore, W. Mickelson, C. Esquivias, A. Zettl View Affiliations, Precision cutting of nanotubes with a low-energy electron beam. Appl. Phys. Lett. 86, 053109 (2005).  https://doi.org/10.1063/1.1857081 CrossRefGoogle Scholar
  43. 43.
    G.A. Dearborn Mesyats, Explosive Electron Emission (URO Press, Ekaterinburg, 1998)Google Scholar
  44. 44.
    H. Schultz, Electron Beam Welding (Abington Publishing, Cambridge, 1994)CrossRefGoogle Scholar
  45. 45.
    T. Gnanavel, Z. Saghi, Y. Peng, B.J. Inkson, M.R.J. Gibbs, G. Möbus, in Nanofabrication of Ferromagnetic Nanotips and Nanobridges by 2D and 3D Electron-Beam Cutting, ed. by S. Richter, A. Schwedt. EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany (Springer, Berlin, Heidelberg, 2008)Google Scholar
  46. 46.
    R.W. Schneider, Electron Beam Machining, in ASM Handbook, vol 16, Machining, (ASM International, Materials Park, 1989)Google Scholar
  47. 47.
    Y. Uno et al., High efficiency finishing process for metal mold by large-area electron beam irradiation. Precis. Eng. 29(4), 449–455 (2005)MathSciNetCrossRefGoogle Scholar
  48. 48.
    J. Taniguchi, S.-i. Satake, T. Oosumi, A. Fukushige, Y. Kogo, Dwell time adjustment for focused ion beam machining. Nucl. Inst. Methods Phys. Res. B 307, 248–252 (2013)CrossRefGoogle Scholar
  49. 49.
    H.-S. Yoon, C.-S. Kim, H.-T. Lee, S.-H. Ahn, Advanced scanning paths for focused ion beam milling. Vacuum 143, 40–49 (2017)CrossRefGoogle Scholar
  50. 50.
    D. De Felicis, M.Z. Mughal, E. Bemporad, A method to improve the quality of 2.5 dimensional micro-and nanostructures produced by focused ion beam machining. Micron 101, 8–15 (2017)CrossRefGoogle Scholar
  51. 51.
    A. Sabouri, C.J. Anthony, J. Bowen, V. Vishnyakov, P.D. Prewett, The effects of dwell time on focused ion beam machining of silicon. Microelectron. Eng. 121, 24–26 (2014)CrossRefGoogle Scholar
  52. 52.
    D.M. Allen, P. Shore, R.W. Evans, C. Fanara, W. O’Brien, S. Marson, W. O’Neill, Ion beam, focused ion beam, and plasma discharge machining. CIRP Ann. Manuf. Technol. 58, 647–662 (2009)CrossRefGoogle Scholar
  53. 53.
    D.P. Adams, M.J. Vasile, T.M. Mayer, Focused ion beam sculpting curved shape cavities in crystalline and amorphous targets. J. Vac. Sci. Technol. B 24(4), 1766–1775 (2006)CrossRefGoogle Scholar
  54. 54.
    D.P. Adams, T.M. Mayer, M.J. Vasile, K. Archuleta, Effects of evolving surface morphology on yield during focused ion beam milling of carbon. Appl. Surf. Sci. 252, 2432–2344 (2006)CrossRefGoogle Scholar
  55. 55.
    P.A. Beck, B.F.P. Roos, S.O. Demokritov, B. Hillebrands, Ion beam smoothing with low-energy argon ions and reduction of néel “Orange peel” coupling in magnetic tunnel junctions. J. Magn. Magn. Mater. 290–291, 1108–1111 (2005)CrossRefGoogle Scholar
  56. 56.
    X. Ding et al., Machining with micro-sized single crystalline diamond tools fabricated by a focused ion beam. J. Micromech. Microeng. 19, 025005 (2009)CrossRefGoogle Scholar
  57. 57.
    X. Ding, G.C. Lim, C.K. Cheng, D.L. Butler, K.C. Shaw, K. Liu, W.S. Fong, Fabrication of a micro-size diamond tool using a focused ion beam. J. Micromech. Microeng. 18, 075017 (2008)CrossRefGoogle Scholar
  58. 58.
    K. Edinger, T. Kraus, Modeling of focused ion beam induced chemistry and comparison with experimental data. Microelectron. Eng. 57–58, 263–268 (2001)CrossRefGoogle Scholar
  59. 59.
    C.M. Egert, Roughness Evolution of Optical Materials Induced by Ion Beam Milling, in Proceedings of the SPIE 1752, 1992Google Scholar
  60. 60.
    R.W. Evans, S. Marson, D.M. Allen, A Review of Focused Ion Beam Technology for the Fabrication of Ultra Precision Diamond Cutting Tools, in Proceedings of the 6th International Conference on Materials for Microelectronics and Nanoengineering (Cranfield, UK, 2006, p. 9–12)Google Scholar
  61. 61.
    R.W. Evans, D.M. Allen Fabricating Diamond Microtools with Focused Ion Beam Machining, in Proceedings of the 10th Anniversary EuSPEN International Conference, vol. 2 (Zürich, Switzerland, 2008, p. 11–15)Google Scholar
  62. 62.
    L. Frey, C. Lehrer, H. Ryssel, Nanoscale effects in focused ion beam processing. Appl. Phys. A 76, 1017–1023 (2003)CrossRefGoogle Scholar
  63. 63.
    F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, Large area smoothing of optical surfaces by low-energy ion beams. Thin Solid Films 459, 100–105 (2004)CrossRefGoogle Scholar
  64. 64.
    S. Chamarthi, N. Sinivasa Reddy, M.K. Elipey, D.V. Ramana Reddy, Investigation analysis of plasma arc cutting parameters on the unevenness surface of Hardox-400 material. Procedia Eng. 64, 854–861 (2013)CrossRefGoogle Scholar
  65. 65.
    K. Salonitis, S. Vatousianos, Experimental investigation of the plasma arc cutting process. Procedia CIRP 3, 287–292 (2012)CrossRefGoogle Scholar
  66. 66.
    F. Rotundo, C. Martini, C. Chiavari, L. Ceschini, A. Concetti, E. Ghedini, V. Colombo, S. Dallavalle, Plasma arc cutting: Microstructural modifications of hafnium cathodes during first cycles. Mater. Chem. Phys. 134(2–3), 858–866 (2012)CrossRefGoogle Scholar
  67. 67.
    S. Liu, S. Chen, Q. Wang, Y. Li, H. Zhang, H. Ding, Analysis of plasma characteristics and conductive mechanism of laser assisted pulsed arc welding. Opt. Lasers Eng. 92, 39–47 (2017)CrossRefGoogle Scholar
  68. 68.
    E. Gariboldi, B. Previtali, High tolerance plasma arc cutting of commercially pure titanium. J. Mater. Process. Technol. 160(1), 77–89 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rasheedat Modupe Mahamood
    • 1
    • 2
  • Esther Titilayo Akinlabi
    • 1
  1. 1.Department of Mechanical Engineering Science, Faculty of Engineering and the Built EnvironmentUniversity of Johannesburg, Auckland Park Kingsway Campus, Auckland ParkJohannesburgSouth Africa
  2. 2.Department of Mechanical EngineeringFaculty of Engineering, University of IlorinIlorinNigeria

Personalised recommendations