Advertisement

Electrochemical Cutting Process

  • Rasheedat Modupe Mahamood
  • Esther Titilayo Akinlabi
Chapter
Part of the Mechanical Engineering Series book series (MES)

Abstract

Electrochemical machining process is an advanced cutting process that is based on Faraday law of electrolysis in which reverse electroplating process is used to achieve metal removal. It can be used to machine hard and difficult-to-machine materials. This important advanced machining process is described in this chapter. Development of new materials comes with lots of challenges in machining such materials because of the extreme properties of such materials that make it difficult to process these materials using the traditional manufacturing process. Electrochemical machining can be used to easily machine complex and intricate parts from these advanced materials and at mass production rate. Different types of electrochemical machining processes and processing parameters that influence the properties of material are presented. Advantages, disadvantages and areas of applications of electrochemical machining process are highlighted. Some of the research works in electrochemical machining process are also presented in this chapter.

Keywords

Electrochemical drilling Electrochemical deburring Electrochemical broaching Electrochemical cutting Material removal rate 

Notes

Acknowledgments

This work was supported by the University of Johannesburg research council (URC) and University of Ilorin.

References

  1. 1.
    M.M. Lohrengel, K.P. Rataj, T. Münninghoff, Electrochemical machining—Mechanisms of anodic dissolution. Electrochim. Acta 201, 348–353 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Datta, D. Landolt, Fundamental aspects and applications of electrochemical microfabrication. Electrochim. Acta 45(15), 2535–2558 (2000)CrossRefGoogle Scholar
  3. 3.
    D. Landolt, P.-F. Chauvy, O. Zinger, Electrochemical micromachining, polishing and surface structuring of metals: Fundamental aspects and new developments. Electrochim. Acta 48(20), 3185–3201 (2003)CrossRefGoogle Scholar
  4. 4.
    V. Lehmann, Electrochemistry of Silicon (Weinheim and FRG, Wiley-VCHVerlag GmbHg, 2002)CrossRefGoogle Scholar
  5. 5.
    A. Davydov, V. Volgin, V. Lyubimov, Electrochemical machining of metals: Fundamentals of electrochemical shaping. Russ. J. Electrochem. 40(12), 1230–1265 (2004)CrossRefGoogle Scholar
  6. 6.
    J. Liu, D. Zhu, L. Zhao, Z. Xu, Experimental investigation on electrochemical machining of γ-TiAl intermetallic. Procedia CIRP 35, 20–24 (2015)CrossRefGoogle Scholar
  7. 7.
    R.K. Pandey, P. Senthil, L. Boriwal, A. Malviy, Experimental investigation on influence of ECM process parameters on responses using full factorial design. Mater. Today: Proceedings 4, 3666–3671 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Senthilkumar, G. Ganesan, R. Karthikeyan, Influence of input parameters on characteristics of electro chemical machining process. Int. J. Appl. Sci. Eng. 11(1), 13–24 (2013)Google Scholar
  9. 9.
    C. Xuezhen, X. Zhengyang, Z. Dong, F. Zhongdong, Z. Di, Experimental research on electrochemical machining of titanium alloy Ti60 for a blisk. Chin. J. Aeronaut. 29(1), 274–282 (2016)CrossRefGoogle Scholar
  10. 10.
    F. Klocke, M. Zeis, A. Klink, D. Veselovac, Experimental research on the electrochemical machining of moderntitanium- and nickel-based alloys for aero engine components. Procedia CIRP 6, 368–372 (2013)CrossRefGoogle Scholar
  11. 11.
    W. Liu, S. Ao, Y. Li, Z. Liu, H. Zhang, S.M. Manladan, Z. Luo, Z. Wang, Effect of anodic behavior on electrochemical machining of TB6 titanium alloy. Electrochim. Acta 233, 190–200 (2017)CrossRefGoogle Scholar
  12. 12.
    T. Paczkowski, J. Zdrojewski, Monitoring and control of the electrochemical machining process under the conditions of a vibrating tool electrode. J. Mater. Process. Technol. 244, 204–214 (2017)CrossRefGoogle Scholar
  13. 13.
    Z. Xu, X. Chen, Z. Zhou, P. Qin, D. Zhu, Electrochemical machining of high-temperature titanium alloy Ti60. Procedia CIRP 42, 125–130 (2016)CrossRefGoogle Scholar
  14. 14.
    V.V. Lyubimov, V.M. Volgin, U. Mescheder, I.V. Gnidina, A.S. Ivanov, Investigation of plastic electrode tools for electrochemical machining of silicon. Precis. Eng. 47, 546–556 (2017)CrossRefGoogle Scholar
  15. 15.
    Z.H.U. Dong, G.U. Zhouzhi, X.U.E. Tingyu, L.I.U. Ao, Simulation and experimental investigation on a dynamic lateral flow mode in trepanning electrochemical machining. Chin. J. Aeronaut. 30(4), 1624–1630 (2017)CrossRefGoogle Scholar
  16. 16.
    S.H. Choi, B.H. Kim, H.S. Shin, D.K. Chung, C.N. Chu, Analysis of the electrochemical behaviors of WC-Co alloy for micro ECM. J. Mater. Process. Technol. 213, 621–630 (2013)CrossRefGoogle Scholar
  17. 17.
    D. Deconinck, S. Van Damme, C. Albu, L. Hotoiu, J. Deconinck, Study of the effects of heat removal on the copying accuracy of the electrochemical machining process. Electrochim. Acta 56, 5642–5649 (2011)CrossRefGoogle Scholar
  18. 18.
    D. Deconinck, W. Hoogsteen, J. Deconinck, A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part III: Experimental validation. Electrochim. Acta 103, 161–173 (2013)CrossRefGoogle Scholar
  19. 19.
    X. Fang, N. Qu, Y. Zhang, Z. Xu, D. Zhu, Effects of pulsating electrolyte flow in electrochemical machining. J. Mater. Process. Technol. 214, 36–43 (2014)CrossRefGoogle Scholar
  20. 20.
    T. Fujisawa, K. Inaba, M. Yamamoto, D. Kato, Multiphysics simulation of electrochemical machining process for three-dimensional compressor blade. J. Fluids Eng. 130, 081602 (2008)CrossRefGoogle Scholar
  21. 21.
    S. Hinduja, J. Pattavanitch, Experimental and numerical investigations in electrochemical milling. CIRP J. Manuf. Sci. Technol. 12, 79–89 (2016)CrossRefGoogle Scholar
  22. 22.
    H. Hocheng, Y. Sun, S. Lin, P. Kao, A material removal analysis of electrochemical machining using flat-end cathode. J. Mater. Process. Technol. 140, 264–268 (2003)CrossRefGoogle Scholar
  23. 23.
    Y. Takashima, W. Natsu, Study on electrochemical machining of oil pocket on sliding surface with electrolyte suction tool. Procedia CIRP 42, 112–116 (2016)CrossRefGoogle Scholar
  24. 24.
    W. Wang, D. Zhu, N. Qu, S. Huang, X. Fang, Electrochemical drilling with vacuum extraction of electrolyte. J. Mater. Process. Technol. 210, 238–244 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Zhang, D. Zhu, Z. Xu, K. Zhang, J. Liu, N. Qu, D. Zhu, Improvement of trailing edge accuracy in blisk electrochemical machining by optimizing the electric field with an extended cathode. J. Mater. Process. Technol. 231, 301–311 (2016)CrossRefGoogle Scholar
  26. 26.
    V.P. Zhitnikov, N.M. Sherykhalina, A.A. Zaripov, Modelling of precision steady state and non-steady-state electrochemical machining by wire electrode-tool. J. Mater. Process. Technol. 235, 49–54 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rasheedat Modupe Mahamood
    • 1
    • 2
  • Esther Titilayo Akinlabi
    • 1
  1. 1.Department of Mechanical Engineering Science, Faculty of Engineering and the Built EnvironmentUniversity of Johannesburg, Auckland Park Kingsway Campus, Auckland ParkJohannesburgSouth Africa
  2. 2.Department of Mechanical EngineeringFaculty of Engineering, University of IlorinIlorinNigeria

Personalised recommendations