Addictive Disorders

  • Moritz de Greck
  • Georg Northoff


Addictive disorders cause profound changes in behavior and subjective experience. The addictive behavior will preoccupy the patient’s thinking and dominate his motivations. It will become essential for the patient’s well-being.

From a neurobiological point of view, the reward system (including nucleus accumbens, amygdala, and the prefrontal cortex) plays a key role in the formation of addictive disorders.

From a psychodynamic perspective, the four psychologies of psychoanalysis (including drive theory, ego psychology, object relations theory, and self psychology) developed complementary concepts which are helpful in our understanding of the function of addictive disorders.

The knowledge of the neurobiological underpinnings and psychodynamic concepts of addictive disorders leads to new implications for their treatment.


  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Arlington: American Psychiatric Association; 2013.CrossRefGoogle Scholar
  2. Andreassen CS, Torsheim T, Brunborg GS, Pallesen S. Development of a Facebook addiction scale. Psychol Rep. 2012;110(2):501–17.CrossRefGoogle Scholar
  3. Bayer HM, Glimcher PW. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron. 2005;47(1):129–41.CrossRefGoogle Scholar
  4. Beck A, Schlagenhauf F, Wüstenberg T, Hein J, Kienast T, Kahnt T, Schmack K, Hägele C, Knutson B, Heinz A, Wrase J. Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiatry. 2009;66(8):734–42.CrossRefGoogle Scholar
  5. Benkert O, Hippius H. Kompendium der Psychiatrischen Pharmakotherapie. 8th ed. Heidelberg: Springer; 2010.Google Scholar
  6. Berridge KC. Pleasures of the brain. Brain Cogn. 2003;52(1):106–28.CrossRefGoogle Scholar
  7. Berridge KC, Robinson TE. Parsing reward. Trends Neurosci. 2003;26(9):507–13.CrossRefGoogle Scholar
  8. Boggio PS, Sultani N, Fecteau S, Merabet L, Mecca T, Pascual-Leone A, Basaglia A, Fregni F. Prefrontal cortex modulation using transcranial dc stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend. 2008;92(1-3):55–60.CrossRefGoogle Scholar
  9. Camprodon JA, Martínez-Raga J, Alonso-Alonso M, Shih MC, Pascual-Leone A. One session of high frequency repetitive transcranial magnetic stimulation (rtms) to the right prefrontal cortex transiently reduces cocaine craving. Drug Alcohol Depend. 2007;86(1):91–4.CrossRefGoogle Scholar
  10. Cardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev. 2002;26(3):321–52.CrossRefGoogle Scholar
  11. Chessick RD. The pharmacogenic orgasm ïn the drug addict. Arch Gen Psychiatry. 1960;3:545–56.CrossRefGoogle Scholar
  12. Cromwell HC, Berridge KC. Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus? Brain Res. 1993;624(1-2):1–10.CrossRefGoogle Scholar
  13. Davey CG, Yücel M, Allen NB. The emergence of depression in adolescence: development of the prefrontal cortex and the representation of reward. Neurosci Biobehav Rev. 2008;32(1):1–19.CrossRefGoogle Scholar
  14. Di Chiara G, Bassareo V. Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol. 2007;7(1):69–76.CrossRefGoogle Scholar
  15. Frank S, Laharnar N, Kullmann S, Veit R, Canova C, Hegner YL, Fritsche A, Preissl H. Processing of food pictures: influence of hunger, gender and calorie content. Brain Res. 2010;1350:159–66.CrossRefGoogle Scholar
  16. Freud S. Der Witz und seine Beziehung zum Unbewussten. Frankfurt: S. Fischer; 1905.Google Scholar
  17. Freud S. Aus den Anfängen der Psychoanalyse - Briefe an Wilhelm Fließ. Abhandlungen und Notizen aus den Jahren 1887-1902. S. Fischer: Frankfurt; 1962.Google Scholar
  18. Goldstone AP, Prechtl de Hernandez CG, Beaver JD, Muhammed K, Croese C, Bell G, Durighel G, Hughes E, Waldman AD, Frost G, Bell JD. Fasting biases brain reward systems towards high-calorie foods. Eur J Neurosci. 2009;30(8):1625–35.CrossRefGoogle Scholar
  19. Griffiths M. A ‘components’ model of addiction within a biopsychosocial framework. J Subst Use. 2005;10(4):191–7.CrossRefGoogle Scholar
  20. Grüsser SM, Thalemann CN. Verhaltenssucht. 1st ed. Bern: Verlag Hans Huber; 2006.Google Scholar
  21. Hartmann D. A study of drug-taking adolescents. Psychoanal Study Child. 1969;24:384398.Google Scholar
  22. Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grüsser SM, Grüsser-Sinopoli SM, Flor H, Braus DF, Buchholz HG, Gründer G, Schreckenberger M, Smolka MN, Rösch F, Mann K, Bartenstein P. Correlation between dopamine d(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry. 2004;161(10):1783–9.CrossRefGoogle Scholar
  23. Hildebrandt HA. Psychoanalyse der sucht - eine kritische bilanz. Psychoanalyse Widerspruch 36; 2007.Google Scholar
  24. Hoebel BG, Monaco AP, Hernandez L, Aulisi EF, Stanley BG, Lenard L. Self-injection of amphetamine directly into the brain. Psychopharmacology. 1983;81(2):158–63.CrossRefGoogle Scholar
  25. Hollmann M, Pleger B, Villringer A, Horstmann A. Brain imaging in the context of food perception and eating. Curr Opin Lipidol. 2013;24(1):18–24.CrossRefGoogle Scholar
  26. Karreman M, Moghaddam B. The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. J Neurochem. 1996;66(2):589–98.CrossRefGoogle Scholar
  27. Kim SH, Baik SH, Park CS, Kim SJ, Choi SW, Kim SE. Reduced striatal dopamine d2 receptors in people with internet addiction. Neuroreport. 2011;22(8):407–11.CrossRefGoogle Scholar
  28. Kohut H. Narzissmus: eine Theorie der psychoanalytischen Behandlung narzisstischer Persönlichkeitsstörungen. Frankfurt am Main: Suhrkamp; 1975.Google Scholar
  29. Kringelbach ML, O’Doherty J, Rolls ET, Andrews C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex. 2003;13(10):1064–71.CrossRefGoogle Scholar
  30. Martinez D, Gil R, Slifstein M, Hwang DR, Huang Y, Perez A, Kegeles L, Talbot P, Evans S, Krystal J, Laruelle M, Abi-Dargham A. Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biol Psychiatry. 2005;58(10):779–86.CrossRefGoogle Scholar
  31. McBride WJ, Chernet E, Dyr W, Lumeng L, Li TK. Densities of dopamine d2 receptors are reduced in cns regions of alcohol-preferring p rats. Alcohol. 1993;10(5):387–90.CrossRefGoogle Scholar
  32. Mentzos S. Textbook of psychodynamics. The function of dysfunctionality of psychic disorders. (German: Lehrbuch der Psychodynamik. Die Funktion der Dysfunktionalität psychischer Störungen.). 2nd ed. Göttingen: Vandenhock und Ruprecht; 2009.Google Scholar
  33. Milch W. Lehrbuch der Selbstpsychologie. Stuttgart: Verlag W. Kohlhammer; 2001.Google Scholar
  34. Panksepp J, Bishop P. An autoradiographic map of (3h)diprenorphine binding in rat brain: effects of social interaction. Brain Res Bull. 1981;7(4):405–10.CrossRefGoogle Scholar
  35. Pine F. The four psychologies of psychoanalysis and their place in clinical work. J Am Psychoanal Assn. 1988;36:571–96.CrossRefGoogle Scholar
  36. Radó S. The psychic effects of intoxicants: an attempt to evolve a psycho-analytical theory of morbid cravings. Int J Psychoanal. 1926;7:396–413.Google Scholar
  37. Radó S. The psychoanalysis of pharmacothymia (drug addiction). Psychoanal Q. 1933;2:1–23.CrossRefGoogle Scholar
  38. Reuter J, Raedler T, Rose M, Hand I, Gläscher J, Büchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci. 2005;8(2):147–8.CrossRefGoogle Scholar
  39. Robbins TW, Everitt BJ. Drug addiction: bad habits add up. Nature. 1999;398(6728):567–70.CrossRefGoogle Scholar
  40. Rosenfeld HA. On drug addiction. Int J Psychoanal. 1960;41:467–75.PubMedGoogle Scholar
  41. Rösner S, Leucht S, Lehert P, Soyka M. Acamprosate supports abstinence, naltrexone prevents excessive drinking: evidence from a meta-analysis with unreported outcomes. J Psychopharmacol. 2008;22(1):11–23.CrossRefGoogle Scholar
  42. Rossetti ZL, Melis F, Carboni S, Gessa GL. Dramatic depletion of mesolimbic extracellular dopamine after withdrawal from morphine, alcohol or cocaine: a common neurochemical substrate for drug dependence. Ann N Y Acad Sci. 1992;654:513–6.CrossRefGoogle Scholar
  43. Rost WD. Psychoanalyse des Alkoholismus. In: Theorie, diagnostik, Behandlung. 6th ed. Stuttgart: Klett-Cotta; 2001.Google Scholar
  44. Savitt RA. Psychoanalytic studies on addiction: Ego structure in narcotic addiction. Psychoanal Q. 1963;32:43–57.CrossRefGoogle Scholar
  45. Simmons WK, Martin A, Barsalou LW. Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb Cortex. 2005;15(10):1602–8.CrossRefGoogle Scholar
  46. Srisurapanont M, Jarusuraisin N. Opioid antagonists for alcohol dependence. Cochrane Database Syst Rev. 2005;12:CD001867.Google Scholar
  47. Stefanini E, Frau M, Garau MG, Garau B, Fadda F, Gessa GL. Alcohol-preferring rats have fewer dopamine d2 receptors in the limbic system. Alcohol Alcohol. 1992;27(2):127–30.PubMedGoogle Scholar
  48. Stoléru S, Fonteille V, Cornélis C, Joyal C, Moulier V. Functional neuroimaging studies of sexual arousal and orgasm in healthy men and women: a review and meta-analysis. Neurosci Biobehav Rev. 2012;36(6):1481–509.CrossRefGoogle Scholar
  49. Subkowski P. Störungen der Trieborganisation in Suchtentwicklungen. In: Psychodynamik der Sucht: Psychoanalytische Beiträge zur Theorie. Göttingen: Vandenhoeck & Rupprecht; 2008. p. 51–90.Google Scholar
  50. Volkow ND, Fowler JS, Wang GJ. The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology. 2004;47(Suppl 1):3–13.CrossRefGoogle Scholar
  51. Volkow ND, Wang GJ, Begleiter H, Porjesz B, Fowler JS, Telang F, Wong C, Ma Y, Logan J, Goldstein R, Alexoff D, Thanos PK. High levels of dopamine d2 receptors in unaffected members of alcoholic families: possible protective factors. Arch Gen Psychiatry. 2006;63(9):999–1008.CrossRefGoogle Scholar
  52. Wang GJ, Volkow ND, Telang F, Jayne M, Ma J, Rao M, Zhu W, Wong CT, Pappas NR, Geliebter A, Fowler JS. Exposure to appetitive food stimuli markedly activates the human brain. NeuroImage. 2004;21(4):1790–7.CrossRefGoogle Scholar
  53. Wernado M, Blaufuß J, Jacob A, Kannenberg S. Spezifische Interventionen auf der Basis der analytischen/analytisch orientierten Therapie bei psychischen Störungen im Zusammenhang mit psychotropen Substanzen. In: Lehrbuch der Psychotherapie: 2 Psychoanalytische und tiefenpsychologisch fundierte Therapie. 3rd ed. München: CIP-Medien; 2006. p. 97–108.Google Scholar
  54. Wise RA. Neurobiology of addiction. Curr Opin Neurobiol. 1996;6(2):243–51.CrossRefGoogle Scholar
  55. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987;94(4):469–92.CrossRefGoogle Scholar
  56. Wolf ES. Theorie und Praxis der psychoanalytischen Selbstpsychologie. Frankfurt: Suhrkamp; 1998.Google Scholar
  57. Wurmser L, editor. Die verborgene Dimension. Göttingen: Vandenhoeck & Ruprecht; 1997.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Moritz de Greck
    • 1
  • Georg Northoff
    • 2
  1. 1.Department for Psychiatry, Psychosomatic and PsychotherapyJohann Wolfgang Goethe University HospitalFrankfurt am MainGermany
  2. 2.Mind, Brain Imaging, and Neuroethics, Institute of Mental Health ResearchUniversity of OttawaOttawaCanada

Personalised recommendations