Advertisement

Sideband Instabilities

  • H. P. Freund
  • T. M. AntonsenJr.
Chapter

Abstract

This chapter deals with the theory of sideband growth in free-electron lasers. The growth of sidebands of the primary signal in free-electron lasers can occur after the bulk of the electron beam becomes trapped in the ponderomotive potential formed by the beating of the wiggler and radiation fields. Trapped electrons execute an oscillatory bounce motion in the ponderomotive well, and the waves formed by the beating of this oscillation with the primary signal are referred to as the sidebands. The difficulties imposed by the growth of sidebands are that they can compete with and drain energy from the primary signal as well as considerably broaden the output spectrum. Sideband control, therefore, is an important consideration for free-electron laser configurations that operate in the trapped particle regime. Examples of such systems include (1) tapered wiggler configurations designed to trap the beam at an early stage of the interaction and then extract a great deal more energy from the beam over an extended interaction length and (2) oscillators which run at sufficiently high power over an extended pulse time that the electron beam becomes trapped upon entry to the wiggler.

Keywords

Sidebands Sideband instabilities Ponderomotive potential Ponderomotive well Trapped electron trajectories Pendulum equation Small-signal gain 

References

  1. 1.
    T.J.T. Kwan, Trapped particle dynamics and efficiency optimization in free-electron lasers. Phys. Fluids 23, 1857 (1980)CrossRefGoogle Scholar
  2. 2.
    N.M. Kroll, M.N. Rosenbluth, Sideband instabilities in trapped particle free-electron lasers, in Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, ed. by S. F. Jacobs, H. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer (Eds), vol. 7, (Addison-Wesley, Reading, 1980), p. 147Google Scholar
  3. 3.
    A.T. Lin, Saturation of sideband instabilities in a free-electron laser, in Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, ed. by S. F. Jacobs, H. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer (Eds.), vol. 9, (Addison-Wesley, Reading, 1981), p. 867Google Scholar
  4. 4.
    H.P. Freund, P. Sprangle, C.M. Tang, Effect of fluctuating space-charge fields on sideband instabilities in free-electron lasers. Phys. Rev. A 25, 3121 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    C.M. Tang, P. Sprangle, Semi-analytic formulation of the two-dimensional pulse propagation in the free-electron laser oscillator, in Free-Electron Generators of Coherent Radiation, ed. by C. A. Brau, S. F. Jacobs, M. O. Scully (Eds), Proc. SPIE 453 (1984), pp. 11–24Google Scholar
  6. 6.
    J.C. Goldstein, Evolution of long pulses in a tapered wiggler free-electron laser, in Free-Electron Generators of Coherent Radiation, ed. by C. A. Brau, S. F. Jacobs, M. O. Scully (Eds), vol. 453, (SPIE, Bellingham, 1984), p. 2Google Scholar
  7. 7.
    R.C. Davidson, W.A. McMullin, Detrapping stochastic particle instability for electron motion in combined longitudinal wiggler and radiation fields. Phys. Rev. A 29, 791 (1984)CrossRefGoogle Scholar
  8. 8.
    D.C. Quimby, J.M. Slater, J.P. Wilcoxon, Sideband suppression in free-electron lasers with multiple synchrotron periods. IEEE J. Quantum Electron. QE-21, 979 (1985)CrossRefGoogle Scholar
  9. 9.
    R.C. Davidson, Kinetic description of the sideband instability in a helical-wiggler free-electron laser. Phys. Fluids 29, 2689 (1986)CrossRefGoogle Scholar
  10. 10.
    W.B. Colson, The trapped-particle instability in free-electron laser oscillators and amplifiers. Nucl. Instr, Meth A250, 168 (1986)CrossRefGoogle Scholar
  11. 11.
    R.C. Davidson, J.S. Wurtele, Single-particle analysis of the free-electron laser sideband instability for primary electromagnetic waves with constant phase and slowly varying phase. Phys. Fluids 30, 557 (1987)CrossRefGoogle Scholar
  12. 12.
    F.G. Yee, J. Masud, T.C. Marshall, S.P. Schlesinger, Power and sideband studies of a Raman free-electron laser. Nucl. Instr. Meth. A259, 104 (1987)CrossRefGoogle Scholar
  13. 13.
    S.S. Yu, W.M. Sharp, W.M. Fawley, E.T. Scharlemann, A.M. Sessler, E.J. Sternbach, Waveguide suppression of the free-electron laser sideband instability. Nucl. Instr. Meth. A259, 219 (1987)CrossRefGoogle Scholar
  14. 14.
    J. Masud, T.C. Marshall, S.P. Schlesinger, F.G. Yee, W.M. Fawley, E.T. Scharlemann, S.S. Yu, A.M. Sessler, E.J. Sternbach, Sideband control in a millimeter-wave free-electron laser. Phys. Rev. Lett. 58, 763 (1987)CrossRefGoogle Scholar
  15. 15.
    S. Riyopoulos, C.M. Tang, The free-electron laser sideband instability reconsidered. Nucl. Instr. Meth. A259, 226 (1987)CrossRefGoogle Scholar
  16. 16.
    J.C. Goldstein, B.E. Newnam, R.W. Warren, Sideband suppression by an intracavity optical filter in the Los Alamos free-electron laser oscillator. Nucl. Instr. Meth. A272, 150 (1988)CrossRefGoogle Scholar
  17. 17.
    R.W. Warren, J.C. Goldstein, The generation and suppression of synchrotron sidebands. Nucl. Instr. Meth. A272, 155 (1988)CrossRefGoogle Scholar
  18. 18.
    W.M. Sharp, S.S. Yu, Validity of 1-D free-electron laser sideband models. Nucl. Instr. Meth. A272, 397 (1988)CrossRefGoogle Scholar
  19. 19.
    H. Takeda, Analysis of sideband spectra from untapered undulator using analytical techniques. Nucl. Instr. Meth. A272, 404 (1988)CrossRefGoogle Scholar
  20. 20.
    P.J. Channell, Spectral evolution equation for the sideband instability in a free-electron laser oscillator. Nucl. Instr. Meth. A272, 421 (1988)CrossRefGoogle Scholar
  21. 21.
    S. Riyopoulos, C.M. Tang, The structure of the sideband spectrum in the free-electron laser. Phys. Fluids 31, 1708 (1988)CrossRefGoogle Scholar
  22. 22.
    B. Hafizi, A. Ting, P. Sprangle, C.M. Tang, Development of sidebands in tapered and untapered free-electron lasers. Phys. Rev. A 38, 197 (1988)CrossRefGoogle Scholar
  23. 23.
    J.E. Sollid, D.W. Feldman, R.W. Warren, H. Takeda, S.J. Gitomer, W.J. Johnson, W.E. Stein, Sideband suppression in the Los Alamos free-electron laser using a Littrow grating. Nucl. Instr. Meth. A285, 147 (1989)CrossRefGoogle Scholar
  24. 24.
    J.E. Sollid, D.W. Feldman, R.W. Warren, Sideband suppression for free-electron lasers. Nucl. Instr. Meth. A285, 153 (1989)CrossRefGoogle Scholar
  25. 25.
    A. Bhattacharjee, S.Y. Cai, S.P. Chang, J.W. Dodd, T.C. Marshall, Sideband instabilities and optical guiding in a free-electron laser: experiment and theory. Nucl. Instr. Meth. A285, 158 (1989)CrossRefGoogle Scholar
  26. 26.
    S. Riyopoulos, Instability mechanisms in storage ring free-electron oscillators. Nucl. Instr. Meth. A296, 485 (1990)CrossRefGoogle Scholar
  27. 27.
    W.M. Sharp, S.S. Yu, Two-dimensional Vlasov treatment of free-electron laser sidebands. Phys. Fluids B 2, 581 (1990)CrossRefGoogle Scholar
  28. 28.
    Y. Kishimoto, H. Oda, M. Shiho, Parasitic wave excitation by multimode coupling in a Raman-regime free-electron laser. Phys. Rev. Lett. 65, 851 (1990)CrossRefGoogle Scholar
  29. 29.
    E.J. Sternbach, Coupled-wave theory of free-electron laser sidebands in a waveguide. IEEE Trans. Plasma Sci. PS-18, 460 (1990)CrossRefGoogle Scholar
  30. 30.
    M.N. Rosenbluth, H.V. Wong, B.N. Moore, Sideband instabilities in free-electron lasers. Phys. Fluids B 2, 1635 (1990)CrossRefGoogle Scholar
  31. 31.
    J.N. Elgin, Analysis of the sideband instability in the free-electron laser. Phys. Rev. A 43, 2514 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • H. P. Freund
    • 1
  • T. M. AntonsenJr.
    • 2
  1. 1.University of Maryland, University of New MexicoViennaUSA
  2. 2.University of MarylandPotomacUSA

Personalised recommendations