Advertisement

Nonlinear Theory: Guided-Mode Analysis

  • H. P. Freund
  • T. M. AntonsenJr.
Chapter

Abstract

The self-consistent nonlinear theory of the free-electron laser describes the interaction through the linear regime and includes the saturation of the growth mechanism. Saturation can occur through a variety of mechanisms. For an ideal beam that is both monoenergetic and vanishing pitch-angle spread, saturation occurs by means of electron trapping in the ponderomotive potential. In the thermal regime, saturation occurs by a different process. In this case, the axial energy spread of the beam (which can arise due to either a distribution in the total energy of the beam electrons or pitch-angle spread) gives rise to a broadband emission spectrum. As a result, a quasilinear saturation mechanism is operative in which the beam undergoes turbulent diffusion in momentum space. The growth rate in this regime is proportional to the slope of the distribution function; turbulent diffusion acts to form a plateau in momentum space that flattens out the distribution of the beam. As a result, the axial energy spread of the beam increases, and the instability is quenched when the slope of the distribution falls to zero. However, the saturation efficiency in the thermal regime is greatly reduced relative to that found for a sufficiently cold beam in which saturation occurs through the particle-trapping mechanism. We shall focus attention on the latter case in this chapter. This chapter will describe the development of slowly varying envelope approximation (SVEA) formulations in the steady-state regime, as well as the application of the analyses to the description of the fundamental physics of the nonlinear saturation mechanism.

Keywords

Ponderomotive potential Ponderomotive phase Guided-mode analysis Slowly varying envelope approximation SVEA Steady-state formulation Phase trapping efficiency Nonlinear pendulum equation Electron beam injection Tapered wiggler Lagrangian time coordinate Lagrangian model Eulerian model Quasi-static assumption Beamlet Lorentz force equations Gould-Trivelpiece modes Raman criterion Field-reversed configuration DC self-field Diamagnetic Paramagnetic 

References

  1. 1.
    R.M. Phillips, History of the ubitron. Nucl. Inst. Methods A272, 1 (1988)Google Scholar
  2. 2.
    H. Boehmer, M.Z. Caponi, J. Edighoffer, S. Fornaca, J. Munch, G.R. Neil, B. Saur, C. Shih, Variable-wiggler free-electron laser experiment. Phys. Rev. Lett. 48, 141 (1982)CrossRefGoogle Scholar
  3. 3.
    R.W. Warren, B.E. Newnam, J.G. Winston, W.E. Stein, L.M. Young, C.A. Brau, Results of the Los Alamos free-electron laser experiment. IEEE J. Quantum Electron. QE-19, 391 (1983)CrossRefGoogle Scholar
  4. 4.
    J. Edighoffer, G.R. Neil, C.E. Hess, T.I. Smith, S.W. Fornaca, H.A. Schwettman, Variable-wiggler free-electron laser oscillation. Phys. Rev. Lett. 52, 344 (1984)CrossRefGoogle Scholar
  5. 5.
    T.J. Orzechowski, B.R. Anderson, J.C. Clark, W.M. Fawley, A.C. Paul, D. Prosnitz, E.T. Scharlemann, S.M. Yarema, D.B. Hopkins, A.M. Sessler, J.S. Wurtele, High-efficiency extraction of microwave radiation from a tapered-wiggler free-electron laser. Phys. Rev. Lett. 57, 2172 (1986)CrossRefGoogle Scholar
  6. 6.
    P. Sprangle, C.M. Tang, W.M. Manheimer, Nonlinear formulation and efficiency enhancement of free-electron lasers. Phys. Rev. Lett. 43, 1932 (1979)CrossRefGoogle Scholar
  7. 7.
    N.M. Kroll, P.L. Morton, M.N. Rosenbluth, A variable parameter free-electron laser, in The Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, ed. by S. F. Jacobs, H. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, vol. 7, (Addison-Wesley, Reading, 1980), p. 89Google Scholar
  8. 8.
    D. Prosnitz, A. Szöke, V.K. Neil, One-dimensional computer simulation of the variable wiggler free-electron laser, A variable parameter free-electron laser, in The Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, ed. by S. F. Jacobs, H. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, vol. 7, (Addison-Wesley, Reading, 1980), p. 175Google Scholar
  9. 9.
    S.A. Mani, Free-electron laser interaction in a variable pitch wiggler, A variable parameter free-electron laser, in The Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, ed. by S. F. Jacobs, H. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, vol. 7, (Addison-Wesley, Reading, 1980), p. 589Google Scholar
  10. 10.
    W.H. Louisell, C.D. Cantrell, W.A. Wegener, Single-particle approach to free-electron lasers with tapered wigglers, A variable parameter free-electron laser, in The Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, ed. by S. F. Jacobs, H. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, vol. 7, (Addison-Wesley, Reading, 1980), p. 623Google Scholar
  11. 11.
    C.A. Brau, R.K. Cooper, Variable wiggler optimization, A variable parameter free-electron laser, in The Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, ed. by S. F. Jacobs, H. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, vol. 7, (Addison-Wesley, Reading, 1980), p. 647Google Scholar
  12. 12.
    J.M. Slater, J. Adamski, D.C. Quimby, W.M. Grossman, T.L. Churchill, R.E. Center, Tapered wiggler free-electron laser demonstration, in Proceedings of the International Conference on Lasers ’82, ed. by R.C. Powell (STS Press, McLean, 1982), p. 212Google Scholar
  13. 13.
    J.C. Goldstein, Evolution of long pulses in a tapered wiggler free-electron laser, in Free-Electron Generators of Coherent Radiation, ed. by C.A. Brau, S.F. Jacobs, and M.O. Scully Proc. SPIE, Bellingham, Washington 453, 2 (1984) Google Scholar
  14. 14.
    H.P. Freund, S.H. Gold, Efficiency enhancement in free-electron lasers using a tapered axial guide field. Phys. Rev. Lett. 52, 926 (1984)CrossRefGoogle Scholar
  15. 15.
    T.J.T. Kwan, J.M. Dawson, A.T. Lin, Free-electron laser. Phys. Fluids 20, 581 (1977)CrossRefGoogle Scholar
  16. 16.
    T. Taguchi, K. Mima, T. Mochizuki, Saturation mechanism and improvement of conversion efficiency of the free-electron laser. Phys. Rev. Lett. 46, 824 (1981)CrossRefGoogle Scholar
  17. 17.
    H.P. Freund, Nonlinear analysis of free-electron laser amplifiers with axial guide fields. Phys. Rev. A 27, 1977 (1983)CrossRefGoogle Scholar
  18. 18.
    W.B. Colson, J.L. Richardson, Multimode theory of free-electron lasers. Phys. Rev. Lett. 50, 1050 (1983)CrossRefGoogle Scholar
  19. 19.
    T.M. Antonsen Jr., B. Levush, Mode competition and control in free-electron laser oscillators. Phys. Rev. Lett. 62, 1488 (1989)CrossRefGoogle Scholar
  20. 20.
    T.M. Antonsen Jr., B. Levush, Mode competition and suppression in free-electron laser oscillators. Phys. Fluids B 1, 1097 (1989)CrossRefGoogle Scholar
  21. 21.
    T.M. Antonsen Jr., B. Levush, Spectral characteristics of a free-electron laser with time-dependent beam energy. Phys. Fluids B 2, 2791 (1990)CrossRefGoogle Scholar
  22. 22.
    Y. Kishimoto, H. Oda, M. Shiho, K. Odajima, H. Maeda, Effect of electrostatic field on energy conversion efficiency in high current Raman regime free-electron laser. J. Phys. Soc. Japan 59, 118 (1990)CrossRefGoogle Scholar
  23. 23.
    Y. Kishimoto, H. Oda, M. Shiho, Parasitic wave excitation by multimode coupling in a Raman-regime free-electron laser. Phys. Rev. Lett. 65, 851 (1990)CrossRefGoogle Scholar
  24. 24.
    V.A. Bazylev, A.V. Tilupov, Enhancement of the efficiency of a free-electron laser in a longitudinal magnetic field. Sov. J. Quantum Electron. 20, 115 (1990)CrossRefGoogle Scholar
  25. 25.
    D. Iracane, J.L. Ferrer, Stability of a free-electron laser spectrum in the continuous beam limit. Phys. Rev. Lett. 66, 33 (1991)CrossRefGoogle Scholar
  26. 26.
    T.J.T. Kwan, C.M. Snell, Efficiency of free-electron lasers with a scattered electron beam. Phys. Fluids 26, 835 (1983)CrossRefGoogle Scholar
  27. 27.
    A.T. Lin, C.C. Lin, T. Taguchi, W.W. Cheng, Nonlinear saturation of free-electron lasers around gyroresonance. Phys. Fluids 26, 3 (1983)CrossRefGoogle Scholar
  28. 28.
    R.K. Parker, R.H. Jackson, S.H. Gold, H.P. Freund, V.L. Granatstein, P.C. Efthimion, M. Herndon, A.K. Kinkead, Axial magnetic-field effects in a collective-interaction free-electron laser at millimeter wavelengths. Phys. Rev. Lett. 48, 238 (1982)CrossRefGoogle Scholar
  29. 29.
    D. Prosnitz, R.A. Haas, S. Doss, R.J. Galinas, A two-dimensional numerical model of the tapered wiggler free-electron laser, in Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, ed. by S. F. Jacobs, H. S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, vol. 9, (Addison-Wesley, Reading, 1981), p. 1047Google Scholar
  30. 30.
    P. Sprangle, C.M. Tang, Three-dimensional nonlinear theory of the free-electron laser. Appl. Phys. Lett. 39, 677 (1981)CrossRefGoogle Scholar
  31. 31.
    E.T. Scharlemann, Wiggler plane focussing in linear wigglers. J. Appl. Phys. 58, 2154 (1985)CrossRefGoogle Scholar
  32. 32.
    T.J. Orzechowski, B.R. Anderson, W.M. Fawley, D. Prosnitz, E.T. Scharlemann, S.M. Yarema, D.B. Hopkins, A.C. Paul, A.M. Sessler, J.S. Wurtele, Microwave radiation from a high-gain free-electron laser amplifier. Phys. Rev. Lett. 54, 889 (1985)CrossRefGoogle Scholar
  33. 33.
    C.M. Tang, P. Sprangle, Three-dimensional numerical simulation of free-electron lasers by the transverse mode spectral method. IEEE J. Quantum Electron. QE-21, 970 (1985)CrossRefGoogle Scholar
  34. 34.
    A.K. Ganguly, H.P. Freund, Nonlinear analysis of free-electron lasers in three dimensions. Phys. Rev. A 32, 2275 (1985)CrossRefGoogle Scholar
  35. 35.
    A.T. Lin, C.C. Lin, Mode competition in Raman free-electron lasers. Nucl. Instr. Meth. A250, 1373 (1986)Google Scholar
  36. 36.
    H.P. Freund, A.K. Ganguly, Nonlinear analysis of efficiency enhancement in free-electron laser amplifiers. Phys. Rev. A 33, 1060 (1986)CrossRefGoogle Scholar
  37. 37.
    H.P. Freund, A.K. Ganguly, Effect of beam quality on the free-electron laser. Phys. Rev. A 34, 1242 (1986)CrossRefGoogle Scholar
  38. 38.
    H.P. Freund, A.K. Ganguly, Phase variation in free-electron laser amplifiers. IEEE J. Quantum Electron. QE-23, 1657 (1987)CrossRefGoogle Scholar
  39. 39.
    T.J. Orzechowski, E.T. Scharlemann, D.B. Hopkins, Measurement of the phase of the electromagnetic wave in a free-electron laser amplifier. Phys. Rev. A 35, 2184 (1987.) T.J. Orzechowski, B.R. Anderson, J.C. Clark, W.M. Fawley, A.C. Paul, D. Prosnitz, E.T. Scharlemann, S.M. Yarema, D.B. Hopkins, A.M. Sessler, and J.S. Wurtele, High-efficiency extraction of microwave radiation from a tapered-wiggler free-electron laser, Phys. Rev. Lett. 57, 2172 (1986)CrossRefGoogle Scholar
  40. 40.
    A.K. Ganguly, H.P. Freund, High-efficiency operation of free-electron laser amplifiers. IEEE Trans. Plasma Sci. PS-16, 167 (1988)CrossRefGoogle Scholar
  41. 41.
    A.K. Ganguly, H.P. Freund, Three-dimensional simulation of the Raman free-electron laser. Phys. Fluids 31, 387 (1988)CrossRefGoogle Scholar
  42. 42.
    H.P. Freund, H. Bluem, C.L. Chang, Three-dimensional analysis of free-electron laser amplifiers with planar wigglers. Phys. Rev. A 36, 2182 (1987)CrossRefGoogle Scholar
  43. 43.
    H.P. Freund, C.L. Chang, H. Bluem, Harmonic generation in free-electron lasers. Phys. Rev. A 36, 3218 (1987)CrossRefGoogle Scholar
  44. 44.
    H.P. Freund, H. Bluem, C.L. Chang, Three-dimensional simulation of free-electron lasers with planar wigglers. Nucl. Inst. Methods A272, 556 (1988)CrossRefGoogle Scholar
  45. 45.
    H.P. Freund, Multimode nonlinear analysis of free-electron laser amplifiers in three dimensions. Phys. Rev. A 37, 3371 (1988)CrossRefGoogle Scholar
  46. 46.
    H. Bluem, H.P. Freund, C.L. Chang, Harmonic content in a planar wiggler based free-electron laser amplifier. Nucl. Inst. Methods A272, 579 (1988)CrossRefGoogle Scholar
  47. 47.
    S.F. Chang, O.C. Eldridge, J.E. Sharer, Analysis and nonlinear simulation of a quadrupole wiggler free-electron laser at millimeter wavelengths. IEEE J. Quantum Electron. QE-24, 2309 (1988)Google Scholar
  48. 48.
    H.P. Freund, H. Bluem, R.H. Jackson, Nonlinear theory and design of a harmonic ubitron/free-electron laser. Nucl. Inst. Methods A285, 169 (1989)CrossRefGoogle Scholar
  49. 49.
    S.F. Chang, J. Joe, J.E. Sharer, Nonlinear analysis of wiggler taper, mode competition, and space-charge effects for a 280 GHz free-electron laser. IEEE Trans. Plasma Sci. PS-18, 451 (1990)CrossRefGoogle Scholar
  50. 50.
    J.S. Wurtele, R. Chu, J. Fajans, Nonlinear theory and experiment of collective free-electron lasers. Phys. Fluids B 2, 1626 (1990)CrossRefGoogle Scholar
  51. 51.
    D.A. Kirkpatrick, G. Bekefi, A.C. DiRienzo, H.P. Freund, A.K. Ganguly, A millimeter and submillimeter wavelength free-electron laser. Phys. Fluids B 1, 1511 (1989)CrossRefGoogle Scholar
  52. 52.
    D.A. Kirkpatrick, G. Bekefi, A.C. DiRienzo, H.P. Freund, A.K. Ganguly, A high-power 600μm wavelength free-electron laser. Nucl. Inst. Methods A285, 43 (1989)CrossRefGoogle Scholar
  53. 53.
    J. Byers, R.H. Cohen, A microwave free-electron laser code using waveguide modes. Nucl. Inst. Methods A272, 595 (1988)CrossRefGoogle Scholar
  54. 54.
    T.J. Orzechowski, B.R. Anderson, W.M. Fawley, D. Prosnitz, E.T. Scharlemann, S. Yarema, High gain and high extraction efficiency from a free-electron laser operating in the millimeter wave regime. Nucl. Inst. Methods A250, 144 (1986)CrossRefGoogle Scholar
  55. 55.
    N.A. Krall, A.W. Trivelpiece, Principle of Plasma Physics (San Francisco Press, San Francisco, 1986), p. 202Google Scholar
  56. 56.
    J. Fajans, J.S. Wurtele, G. Bekefi, D.S. Knowles, K. Xu, Nonlinear power saturation and phase in a collective free-electron laser amplifier. Phys. Rev. Lett. 57, 579 (1986)CrossRefGoogle Scholar
  57. 57.
    M.E. Conde, G. Bekefi, Experimental study of a 33.3 GHz free-electron laser amplifier with a reversed axial guide magnetic field. Phys. Rev. Lett. 67, 3082 (1991)CrossRefGoogle Scholar
  58. 58.
    M.E. Conde, G. Bekefi, Amplification and superradiant emission from a 33.3 GHz free-electron laser with a reversed axial guide magnetic field. IEEE Trans. Plasma Sci. 20, 240 (1992)CrossRefGoogle Scholar
  59. 59.
    K.R. Chu, A.T. Lin, Harmonic gyroresonance of electrons in combined helical wiggler and axial guide magnetic fields. Phys. Rev. Lett. 67, 3235 (1991)CrossRefGoogle Scholar
  60. 60.
    H.P. Freund, A.K. Ganguly, Nonlinear simulation of a high-power collective free-electron laser. IEEE Trans. Plasma Sci. 20, 245 (1992)CrossRefGoogle Scholar
  61. 61.
    V.A. Bazylev, A. Bourdier, P. Gouard, J.M. Buzzi, Electron trajectories in a free-electron laser with a reversed axial guide field. Phys. Rev. E 48, 3959 (1993)CrossRefGoogle Scholar
  62. 62.
    H.P. Freund, Beam transmission in a high-power collective free-electron laser. Phys. Fluids B 5, 1869 (1993)CrossRefGoogle Scholar
  63. 63.
    N.S. Ginzburg, Diamagnetic and paramagnetic effects in free-electron lasers. IEEE Trans. Plasma Sci. PS-15, 411 (1987)CrossRefGoogle Scholar
  64. 64.
    T.J.T. Kwan, J.M. Dawson, Investigation of the free-electron laser with a guide magnetic field. Phys. Fluids 22, 1089 (1979)CrossRefGoogle Scholar
  65. 65.
    H.P. Freund, R.H. Jackson, D.E. Pershing, The nonlinear analysis of self-field effects in free-electron lasers. Phys. Fluids B 5, 2318 (1993)CrossRefGoogle Scholar
  66. 66.
    H.P. Freund, R. Tatchyn, Collective effects in short wavelength free-electron lasers. Nucl. Inst. Methods A429, 76 (1999)CrossRefGoogle Scholar
  67. 67.
    D.E. Pershing, R.H. Jackson, H. Bluem, H.P. Freund, Improved amplifier performance of the NRL ubitron. Nucl. Inst. Methods A304, 127 (1991)CrossRefGoogle Scholar
  68. 68.
    D.E. Pershing, R.D. Seeley, R.H. Jackson, H.P. Freund, Amplifier performance of the NRL ubitron. Nucl. Inst. Methods A358, 104 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • H. P. Freund
    • 1
  • T. M. AntonsenJr.
    • 2
  1. 1.University of Maryland, University of New MexicoViennaUSA
  2. 2.University of MarylandPotomacUSA

Personalised recommendations