Advertisement

X-Ray Free-Electron Lasers and Self-Amplified Spontaneous Emission (SASE)

  • H. P. Freund
  • T. M. AntonsenJr.
Chapter

Abstract

In this chapter, we consider X-ray free-electron lasers and self-amplified spontaneous radiation (SASE). Because there are no suitable seed lasers at these wavelengths and because the development of X-ray optics has not reached a point which makes oscillator configurations robust, the development of X-ray free-electron lasers has relied on SASE where shot noise on the electron beam grows to saturation in a single pass through a long undulator. Because this requires extremely high peak currents in order to enhance the exponential gain, extreme bunch compression is required prior to the injection of the electron beam into the wiggler. Also, since long wigglers are needed, the wiggler line is composed of multiple wiggler segments separated by quadrupoles to provide for strong focusing of the electron beam. In this chapter, we discuss the equivalent noise power for the start-up of SASE, magnetic chicanes for bunch compression, focusing/defocusing (FODO) lattices, simulation of shot noise, comparison between SASE and master oscillator power amplifiers (MOPAs), phase matching between wiggler segments, and phase shifters, and we give comparisons between the simulation procedures discussed in Chap.  6 with SASE experiments.

Keywords

Superradiant amplifier Self-amplified spontaneous radiation SASE Equivalent noise power Photocathode Linac coherent light source LCLS Magnetic chicane Dipole chicane Bunch compression Master oscillator power amplifiers MOPA Ming Xie parameterization FODO lattice Slippage Phase matching Phase shifters 

References

  1. 1.
    V.L. Granatstein, S.P. Schlesinger, M. Herndon, R.K. Parker, J.A. Pasour, Production of megawatt submillimeter pulses by stimulated magneto-Raman scattering. Appl. Phys. Lett. 30, 384 (1977)CrossRefGoogle Scholar
  2. 2.
    D.B. McDermott, T.C. Marshall, S.P. Schlesinger, R.K. Parker, V.L. Granatstein, High-power free-electron laser based on stimulated Raman backscattering. Phys. Rev. Lett. 41, 1368 (1978)CrossRefGoogle Scholar
  3. 3.
    R.K. Parker, R.H. Jackson, S.H. Gold, H.P. Freund, V.L. Granatstein, P.C. Efthimion, M. Herndon, A.K. Kinkead, Axial magnetic field effects in a collective-interaction free-electron laser at millimeter wavelengths. Phys. Rev. Lett. 48, 238 (1982)CrossRefGoogle Scholar
  4. 4.
    R.H. Jackson, S.H. Gold, R.K. Parker, H.P. Freund, P.C. Efthimion, V.L. Granatstein, M. Herndon, A.K. Kinkead, J.E. Kosakowski, T.J.T. Kwan, Design and operation of a collective millimeter-wave free-electron laser. IEEE J. Quantum Electron. QE-19, 346 (1983)CrossRefGoogle Scholar
  5. 5.
    S.H. Gold, W.M. Black, H.P. Freund, V.L. Granatstein, R.H. Jackson, P.C. Efthimion, A.K. Kinkead, Study of gain, bandwidth, and tunability of a millimeter-wave free-electron laser operating in the collective regime. Phys. Fluids 26, 2683 (1983)CrossRefGoogle Scholar
  6. 6.
    S.H. Gold, W.M. Black, H.P. Freund, V.L. Granatstein, A.K. Kinkead, Radiation growth in a millimeter-wave free-electron laser operating in the collective regime. Phys. Fluids 27, 746 (1984)CrossRefGoogle Scholar
  7. 7.
    J.A. Pasour, R.F. Lucey, C.A. Kapetanakos, Long-pulse, high-power free-electron laser with no external beam focusing. Phys. Rev. Lett. 53, 1728 (1984)CrossRefGoogle Scholar
  8. 8.
    S.H. Gold, D.L. Hardesty, A.K. Kinkead, L.R. Barnett, V.L. Granatstein, High-gain 35 GHz free-electron laser amplifier experiment. Phys. Rev. Lett. 52, 1218 (1984)CrossRefGoogle Scholar
  9. 9.
    J.A. Pasour, R.F. Lucey, and C.W. Roberson, Long pulse free-electron laser driven by a linear induction accelerator, in Free-Electron Generators of Coherent Radiation, ed. by C.A. Brau, S.F. Jacobs, M.O. Scully, Proc. SPIE 453 (1984), p. 328Google Scholar
  10. 10.
    J.A. Pasour, S.H. Gold, Free-electron laser experiments with and without a guide magnetic field: a review of the millimeter-wave free-electron laser research at the Naval Research Laboratory. IEEE J. Quantum Electron. QE-21, 845 (1985)CrossRefGoogle Scholar
  11. 11.
    S.H. Gold, A.K. Ganguly, H.P. Freund, A.W. Fliflet, V.L. Granatstein, D.L. Hardesty, A.K. Kinkead, Parametric behavior of a high-gain 35 GHz free-electron laser amplifier with guide magnetic field. Nucl. Instr. Meth. A250, 366 (1986)CrossRefGoogle Scholar
  12. 12.
    J. Mathew, J.A. Pasour, High-gain, long-pulse free-electron laser oscillator. Phys. Rev. Lett. 56, 1805 (1986)CrossRefGoogle Scholar
  13. 13.
    J.A. Pasour, J. Mathew, C. Kapetanakos, Recent results from the Naval Research Laboratory experimental free-electron laser program. Nucl. Instr. Meth. A259, 94 (1987)CrossRefGoogle Scholar
  14. 14.
    D.S. Birkett, T.C. Marshall, S.P. Schlesinger, D.B. McDermott, A submillimeter free-electron laser experiment. IEEE J. Quantum Electron. QE-17, 1348 (1981)CrossRefGoogle Scholar
  15. 15.
    J. Masud, T.C. Marshall, S.P. Schlesinger, F.G. Yee, Gain measurements from start-up and spectrum of a Raman free-electron laser oscillator. Phys. Rev. Lett. 56, 1567 (1986)CrossRefGoogle Scholar
  16. 16.
    J. Masud, T.C. Marshall, S.P. Schlesinger, F.G. Yee, W.M. Fawley, E.T. Scharlemann, S.S. Yu, A.M. Sessler, E.J. Sternbach, Sideband control in a millimeter-wave free-electron laser. Phys. Rev. Lett. 58, 763 (1987)CrossRefGoogle Scholar
  17. 17.
    J. Masud, T.C. Marshall, S.P. Schlesinger, F.G. Yee, Regenerative gain in a Raman free-electron laser oscillator. IEEE J. Quantum Electron. QE-23, 1594 (1987)CrossRefGoogle Scholar
  18. 18.
    F.G. Yee, J. Masud, T.C. Marshall, S.P. Schlesinger, Power and sideband studies of a Raman free-electron laser. Nucl. Instr. Meth. A259, 104 (1987)CrossRefGoogle Scholar
  19. 19.
    F.G. Yee, T.C. Marshall, S.P. Schlesinger, Efficiency and sideband observations of a Raman free-electron laser oscillator with a tapered undulator. IEEE Trans. Plasma Sci. PS-16, 162 (1988)CrossRefGoogle Scholar
  20. 20.
    S.Y. Cai, S.P. Chang, J.W. Dodd, T.C. Marshall, H. Tang, Optical guiding in a Raman free-electron laser: computation and experiment. Nucl. Instr. Meth. A272, 136 (1988)CrossRefGoogle Scholar
  21. 21.
    J.W. Dodd, T.C. Marshall, Spiking radiation in the Columbia free-electron laser. Nucl. Instr. Meth. A296, 4 (1990)CrossRefGoogle Scholar
  22. 22.
    J. Fajans, G. Bekefi, Y.Z. Yin, B. Lax, Spectral measurements from a tunable, Raman free-electron laser. Phys. Rev. Lett. 53, 246 (1984)CrossRefGoogle Scholar
  23. 23.
    J. Fajans, G. Bekefi, Y.Z. Yin, B. Lax, Microwave studies of a tunable free-electron laser in combined axial and wiggler magnetic fields. Phys. Fluids 28, 1995 (1985)CrossRefGoogle Scholar
  24. 24.
    D.A. Kirkpatrick, G. Bekefi, A.C. DiRienzo, H.P. Freund, A.K. Ganguly, A millimeter and submillimeter wavelength free-electron laser. Phys. Fluids B1, 1511 (1989)CrossRefGoogle Scholar
  25. 25.
    D.C. Nguyen, R.L. Sheffield, C.M. Fortgang, J.C. Goldstein, J.M. Kinross-Wright, N.A. Ebrahim, Self-amplified spontaneous emission driven by a high-brightness electron beam. Phys. Rev. Lett. 81, 810 (1998)CrossRefGoogle Scholar
  26. 26.
    S.V. Milton et al., Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser. Science 292, 2037 (2001)CrossRefGoogle Scholar
  27. 27.
    P. Frigola et al., Initial gain measurements of an 800 nm SASE FEL, VISA. Nucl. Instrum. Meth. A475, 339 (2001)CrossRefGoogle Scholar
  28. 28.
    V. Ayvazyan et al., First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. 37, 297 (2006)Google Scholar
  29. 29.
    P. Emma et al., First lasing and operation of an Ångstrom-wavelength free-electron laser. Nature Phot. 4, 641 (2009)CrossRefGoogle Scholar
  30. 30.
    L. Giannessi et al., Self-amplified spontaneous emission for a single pass free-electron laser. Phys. Rev. ST-AB 14, 060712 (2011)Google Scholar
  31. 31.
    T. Tanaka, S. Goto, T. Hara, T. Hatsui, H. Ohashi, K. Togawa, M. Yabashi, H. Tanaka, Undulator commissioning by characterization of radiation in x-ray free-electron lasers. Phys. Rev. ST-AB 15, 110701 (2012)Google Scholar
  32. 32.
    J.-H. Han et al., Status of the PAL-XFEL project, in Proceedings of the 2012 International Particle Accelerator Conference (New Orleans, 2012)Google Scholar
  33. 33.
    E. Garwin, F. Meier, T. Pierce, K. Sattler, H.-C. Siegmann, A pulsed source of spin-polarized electrons by photoemission from EuO. Nucl. Instrum. Meth. 120, 483 (1974)CrossRefGoogle Scholar
  34. 34.
    D.T. Pierce, F. Meier, Photoemission of spin-polarized electrons from GaS. Phys. Rev. B 13, 5484 (1976)CrossRefGoogle Scholar
  35. 35.
    C.K. Sinclair, R.H. Miller, A high current, short pulse, rf synchronized electron gun for the Stanford linear accelerator. IEEE Trans. Nucl. Sci. NS-28, 2649 (1981)CrossRefGoogle Scholar
  36. 36.
    R.L. Sheffield, E.R. Gray, J.S. Fraser, The Los Alamos photoinjector program. Nucl. Instrum. Meth. A272, 222 (1988)CrossRefGoogle Scholar
  37. 37.
    M. Xie, Design optimization for an x-ray free electron laser driven by the SLAC linac, Proc. IEEE 1995 Particle Accelerator Conference, Vol. 183, IEEE Cat. No. 95CH35843 (1995)Google Scholar
  38. 38.
    K.-J. Kim, M. Xie, Self-amplified spontaneous emission for short wavelength coherent radiation. Nucl. Instrum. Meth. A331, 359 (1993)CrossRefGoogle Scholar
  39. 39.
    H.P. Freund, W.H. Miner Jr., Efficiency enhancement in seeded and self-amplified spontaneous emission free-electron lasers by means of a tapered wiggler. J. Appl. Phys. 105, 113106 (2009)CrossRefGoogle Scholar
  40. 40.
    S. Krinsky, On the definition of the number of temporal modes in the SASE output, in Proceedings of the 27th International Conference on Free-Electron Lasers, (www.JACoW.org, 2005), p. 94
  41. 41.
    H.P. Freund, Phase-matching segmented wigglers in free-electron lasers. Phys. Rev. E 70, 015501(R) (2004)CrossRefGoogle Scholar
  42. 42.
    N.A. Vinokurov, Multisegment wigglers for short wavelength FEL. Nucl. Instr. Meth. A375, 264 (1996)CrossRefGoogle Scholar
  43. 43.
    H.P. Freund, P.J.M. van der Slot, D.L.A.G. Grimminck, I.D. Steya, P. Falgari, Three-dimensional, time-dependent simulation of free-electron lasers with planar, helical, and elliptical undulators. New J. Phys. 19, 023020 (2017)CrossRefGoogle Scholar
  44. 44.
    D. Ratner et al., FEL gain length and taper measurements at LCLS, SLAC-PUB-14194 (2010)Google Scholar
  45. 45.
    B.W.J. McNeil, G.R.M. Robb, M.W. Poole, N.R. Thompson, Harmonic lasing in a free-electron laser amplifier. Phys. Rev. Lett. 96, 084801 (2006)CrossRefGoogle Scholar
  46. 46.
    E.A. Schneidmiller, M. Yurkov, Harmonic lasing in x-ray free-electron lasers. Phys. Rev. ST-AB 15, 080702 (2012)Google Scholar
  47. 47.
    H.P. Freund, N.A. Yampolsky, Q. Marksteiner, Enhanced harmonic generation in x-ray free-electron lasers. Phys. Rev. ST-AB 17, 010702 (2014)Google Scholar
  48. 48.
    K.L.F Bane, M. Sands, The short-range resistive wall wakefields, SLAC-PUB-95-7074 (1995)Google Scholar
  49. 49.
    K.L.F. Bane, G. Stupakov, Resistive wall wakefield in the LCLS undulator beam pipe, SLAC-PUB-10707, (2004)Google Scholar
  50. 50.
    S.S. Baturin, A.D. Kanareykin, New method of calculating the wakefields of a point charge in a 51. K.L.F. Bane and G. Stupakov, Roughness tolerances in the undulator vacuum chamber of LCLS-II, in the Proceedings of the LINAC2014 Conference, Geneva, Switzerland, (2014), p. 708Google Scholar
  51. 51.
    A.W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley, New York, 1993)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • H. P. Freund
    • 1
  • T. M. AntonsenJr.
    • 2
  1. 1.University of Maryland, University of New MexicoViennaUSA
  2. 2.University of MarylandPotomacUSA

Personalised recommendations