Advertisement

Wiggler Imperfections

  • H. P. Freund
  • T. M. AntonsenJr.
Chapter

Abstract

The free-electron laser operates by the coherent axial bunching of electrons, and the interaction is extremely sensitive to random imperfections in the wiggler field. Planar wigglers can easily exhibit a random rms fluctuation of 0.5% from pole to pole. This yields a velocity fluctuation that causes a phase jitter that also detunes the wave-particle resonance. In this chapter, we explore the effects of wiggler imperfections on free-electron laser performance and compare the effects of wiggler imperfections with those of an axial energy spread.

Keywords

Wiggler imperfections Phase jitter Nonlinear modeling 

References

  1. 1.
    E. Hoyer, T. Chan, J.Y.G. Chin, K. Halbach, K.J. Kim, H. Winick, J. Yang, The beam line VI rec-steel hybrid wiggler for SSRL. IEEE Trans. Nucl. Sci. NS-30, 3118 (1983)CrossRefGoogle Scholar
  2. 2.
    B.M. Kincaid, Random errors in undulators and their effects on the radiation spectrum. J. Opt. Soc. Am. B 2, 1294 (1985)CrossRefGoogle Scholar
  3. 3.
    W.P. Marable, E. Esarey, C.M. Tang, Vlasov theory of wiggler field errors and radiation growth in a free-electron laser. Phys. Rev. A 42, 3006 (1990)CrossRefGoogle Scholar
  4. 4.
    L.H. Yu, S. Krinsky, R.L. Gluckstern, J.B.J. van Zeijts, Effect of wiggler errors on free-electron laser gain. Phys. Rev. A 45, 1163 (1992)CrossRefGoogle Scholar
  5. 5.
    C.J. Elliot, B. McVey, in Analysis of Undulator Field Errors for XUV Free-electron Lasers, ed. by R. Bonifacio, L. Fonda, C. Pellegrini. Undulator magnets for synchrotron radiation and free electron lasers (World Scientific, Singapore, 1987), p. 142Google Scholar
  6. 6.
    H.D. Shay, E.T. Scharlemann, Reducing sensitivity to errors in free-electron laser amplifiers. Nucl. Instr. Meth. A272, 601 (1988)CrossRefGoogle Scholar
  7. 7.
    W.P. Marable, C.M. Tang, E. Esarey, Simulation of free-electron lasers in the presence of correlated magnetic field errors. IEEE J. Quantum Electron. QE-27, 2693 (1991)CrossRefGoogle Scholar
  8. 8.
    H.P. Freund, R.H. Jackson, Self-consistent analysis of wiggler field errors in free-electron lasers. Phys. Rev. A 45, 7488 (1992)CrossRefGoogle Scholar
  9. 9.
    H.P. Freund, R.H. Jackson, Self-consistent analysis of the effect of wiggler field errors in free-electron lasers. Nucl. Instr. Meth. A331, 461 (1993)CrossRefGoogle Scholar
  10. 10.
    H. Bluem, Generation of Harmonic Radiation from a Ubitron/FEL Configuration, Ph.D. Thesis, University of Maryland (1990)Google Scholar
  11. 11.
    H.P. Freund, P.J.M. van der Slot, D.L.A.G. Grimminck, I.D. Setya, P. Falgari, Three-dimensional, time-dependent simulation of free-electron lasers with planar, helical, and elliptical undulators. New J. Phys. 19, 023020 (2017)CrossRefGoogle Scholar
  12. 12.
    X.J. Wang, T. Watanabe, Y. Shen, R. Li, J.B. Murphy, T. Tsang, H.P. Freund, Efficiency enhancement using electron energy detuning in a laser seeded free electron laser amplifier. Appl. Phys. Lett. 91, 181115 (2007)CrossRefGoogle Scholar
  13. 13.
    D.C. Quimby, S.C. Gottschalk, F.E. James, K.E. Robinson, J.M. Slater, A.S. Valla, Development of a 10-meter, wedged-pole undulator. Nucl. Instr. Meth. A285, 281 (1989)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • H. P. Freund
    • 1
  • T. M. AntonsenJr.
    • 2
  1. 1.University of Maryland, University of New MexicoViennaUSA
  2. 2.University of MarylandPotomacUSA

Personalised recommendations