Recent Advances in the Use of Mitochondrial Activity of Fern Spores for the Evaluation of Acute Toxicity

  • Alexis Joseph Rodríguez-Romero
  • Jacinto Elías Sedeño-Díaz
  • Eugenia López-López
  • Marta Esteban
  • Luis G. Quintanilla
  • Myriam Catalá
Chapter

Abstract

One of the main concerns of current environmental toxicology is the low number of taxa used for standard bioassays. Ferns are the second largest group of vascular plants and are important components of numerous plant communities. Fern spores and gametophytes have long been recognized as useful models for plant research, since they constitute a naturally miniaturized and low-cost higher plant model. Mitochondria are the main energy source in eukaryotic cells, and any toxic damage to this organelle will affect the whole organism. The reduction of tetrazolium salts to water-insoluble coloured formazan salts by the NADH reductase complex (EC 1.6.5.3) has been used for more than 50 years as a measure of cell mitochondrial activity and viability in eukaryotic organisms. Here, the reduction of 2, 3, 5-triphenyltetrazolium chloride (TTC) by mitochondria is adapted and optimized to measure fern spore or gametophyte viability. A review of the recent literature using the fern spore bioassay reflects its utility for different environmental applications such as dose-response toxicological studies, environmental technology assessment or environmental monitoring. We conclude that this method constitutes a promising low-cost bioassay for toxicity of higher plant during development.

Keywords

Cyathea Dryopteris Osmunda Polystichum Phytotoxicity Spore 

References

  1. Arosa ML, Ramos JA, Quintanilla LG, Brown D (2010) First report of fern (Culcita macrocarpa) spore consumption by a small mammal (Apodemus sylvaticus). Mamm Biol 75:115–121.  https://doi.org/10.1016/j.mambio.2009.05.009
  2. Ballesteros D, Estrelles E, Walters C, Ibars AM (2012) Effects of temperature and desiccation on ex situ conservation of nongreen fern spores. Am J Bot 99:721–729.  https://doi.org/10.3732/ajb.1100257 CrossRefPubMedGoogle Scholar
  3. Banks JA (1999) Gametophyte developtment in ferns. Annu Rev Plant Physiol Plant Mol Biol 50:163–186Google Scholar
  4. Barnea N, Alon Y, Sibony M, Rubin B (2000) The effect of late season application of glyphosate on cotton plants and weeds. In: 2000 Proceedings Beltwide Cotton Conferences, San Antonio, pp 663–665Google Scholar
  5. Brock JMR, Perry GLW, Lee WG, Burns BR (2016) Tree fern ecology in New Zealand: a model for southern temperate rainforests. For Ecol Manag 375:112–126CrossRefGoogle Scholar
  6. Brookes PS, Yoon YS, Robotham JL et al (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833.  https://doi.org/10.1152/ajpcell.00139.2004 CrossRefPubMedGoogle Scholar
  7. Catalá M, Esteban M, Rodríguez-Gil JL, Quintanilla LG (2009) Development of a naturally miniaturised testing method based on the mitochondrial activity of fern spores: a new higher plant bioassay. Chemosphere 77:983–988Google Scholar
  8. Catalá M, Pagani R, Portolés M-T (2009) Regulation of hepatocyte glutathione content by hepatic sinusoidal cells activated with LPS: anatomical restrictions. Histol Histopathol 24:1541–1550PubMedGoogle Scholar
  9. Catalá M, Domínguez-Morueco N, Migens A et al (2015) Elimination of drugs of abuse and their toxicity from natural waters by photo-Fenton treatment. Sci Total Environ 520:198–205.  https://doi.org/10.1016/j.scitotenv.2015.03.042
  10. Dorne JL, Skinner L, Frampton GK et al (2007) Human and environmental risk assessment of pharmaceuticals: differences, similarities, lessons from toxicology. Anal Bioanal Chem 387:1259–1268CrossRefPubMedGoogle Scholar
  11. Drake DR, Pratt LW (2001) Seedling mortality in Hawaiian rain forest: the role of small-scale physical disturbance. Biotropica 33:319–323.  https://doi.org/10.1646/0006-3606(2001)033[0319:SMIHRF]2.0.CO;2
  12. Dreistadt SH, Clark JK, Flint ML (1994) Pests of landscape trees and shrubs: an integrated pest management guide. University of California, OaklandGoogle Scholar
  13. Esteban S, Llamas PM, García-Cortés H, Catalá M (2016) The endocrine disruptor nonylphenol induces sublethal toxicity in vascular plant development at environmental concentrations: a risk for riparian plants and irrigated crops? Environ Pollut 216:480–486.  https://doi.org/10.1016/j.envpol.2016.05.086 CrossRefPubMedGoogle Scholar
  14. Feito R, Valcárcel Y, Catalá M (2012) Biomarker assessment of toxicity with miniaturised bioassays: diclofenac as a case study. Ecotoxicology 21(1):289–296Google Scholar
  15. Feito R, Valcárcel Y, Catalá M (2013) Preliminary data suggest that venlafaxine environmental concentrations could be toxic to plants. Chemosphere 90:2065–2069CrossRefPubMedGoogle Scholar
  16. García-Cambero JP, García-Cortés H, Valcárcel Y, Catalá M (2015) Environmental concentrations of the cocaine metabolite benzoylecgonine induced sublethal toxicity in the development of plants but not in a zebrafish embryo-larval model. J Hazard Mater 300:866–872.  https://doi.org/10.1016/j.jhazmat.2015.08.019 CrossRefPubMedGoogle Scholar
  17. Gómez-Noguez F, Pérez-García B, Mehltreter K et al (2016) Spore mass and morphometry of some fern species. Flora Morphol Distrib Funct Ecol Plants 223:99–105.  https://doi.org/10.1016/j.flora.2016.05.003 CrossRefGoogle Scholar
  18. Gong P, Wilke BM, Strozzi E, Fleischmann S (2001) Evaluation and refinement of a continuous seed germination and early seedling growth test for the use in the ecotoxicological assessment of soils. Chemosphere 44:491–500CrossRefPubMedGoogle Scholar
  19. Kalina M, Palmer JM (1968) Reduction of tetrazolium salts by plant mitochondria. Histochemie 14:366–695CrossRefPubMedGoogle Scholar
  20. la Farre M, Perez S, Kantiani L, Barcelo D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trac-Trends Anal Chem 27:991–1007.  https://doi.org/10.1016/j.trac.2008.09.010ER CrossRefGoogle Scholar
  21. Landis WG, Yu M-H (1998) An introduction to toxicity testing. In: Introduction to environmental toxicology: impacts of chemicals upon ecological systems. CRC Press, Boca Raton, pp 21–53Google Scholar
  22. Large MF, Braggins JE (2004) Tree ferns. Timber Press, PortlandGoogle Scholar
  23. Mariani M, Romero R, Cassano A, Zalazar C (2014) Degradation of a mixture of glyphosate and 2,4-D in water solution employing the UV/H2O2 process, including toxicity evaluation. In: Advanced oxidation technologies. CRC Press, Leiden, pp 99–117Google Scholar
  24. Marugán J, Bru D, Pablos C, Catalá M (2012) Comparative evaluation of acute toxicity by Vibrio fischeri and fern spore based bioassays in the follow-up of toxic chemicals degradation by photocatalysis. J Hazard Mater 213–214:117–122Google Scholar
  25. Myers JP, Antoniou MN, Blumberg B et al (2016) Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health 15:19.  https://doi.org/10.1186/s12940-016-0117-0 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Quintanilla LG, Escudero A (2006) Spore fitness components do not differ between diploid and allotetraploid species of Dryopteris (Dryopteridaceae). Ann Bot 98:609–618.  https://doi.org/10.1093/aob/mcl137
  27. Quintanilla LG, Amigo J, Pangua E, Pajaron S (2002) Effect of storage method on spore viability in five globally threatened fern species. Ann Bot 90:461–467Google Scholar
  28. Reston VA (1999) The quality of our nation’s waters – nutrients and pesticides. USGS, DenverGoogle Scholar
  29. Roberts NR, Dalton PJ, Jordan GJ (2005) Epiphytic ferns and bryophytes of Tasmanian tree-ferns: a comparison of diversity and composition between two host species. Austral Ecol 30:146–154.  https://doi.org/10.1111/j.1442-9993.2005.01440.x CrossRefGoogle Scholar
  30. Rodríguez-Gil JL, Catalá M, Alonso SG et al (2010) Heterogeneous photo-Fenton treatment for the reduction of pharmaceutical contamination in Madrid rivers and ecotoxicological evaluation by a miniaturized fern spores bioassay. Chemosphere 80:381–388CrossRefPubMedGoogle Scholar
  31. Rodríguez-Gil JL, San Sebastián Sauto J, González-Alonso S et al (2013) Development of cost-effective strategies for environmental monitoring of irrigated areas in Mediterranean regions: traditional and new approaches in a changing world. Agric Ecosyst Environ 181:41–49.  https://doi.org/10.1016/j.agee.2013.09.007
  32. Sawamura M, Kawakita A, Kato M (2009) Fern – spore-feeder interaction in temperate forests in Japan: Sporing phenology and spore-feeding insect community. Am J Bot 96:594–604.  https://doi.org/10.3732/ajb.0800256 CrossRefPubMedGoogle Scholar
  33. Smith FE (1951) Tetrazolium Salt. Science 113:751–754Google Scholar
  34. Smolders R, Bervoets L, Blust R (2004) In situ and laboratory bioassays to evaluate the impact of effluent discharges on receiving aquatic ecosystems. Environ Pollut 132:231–243CrossRefPubMedGoogle Scholar
  35. Song Y (2014) Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol 56:106–113.  https://doi.org/10.1111/jipb.12131 CrossRefPubMedGoogle Scholar
  36. Song GZM, Yates DJ, Doley D (2012) Rain forest understorey ferns facilitate tree seedling survival under animal non-trophic stress. J Veg Sci 23:847–857.  https://doi.org/10.1111/j.1654-1103.2012.01398.x CrossRefGoogle Scholar
  37. Tryon AF, Lugardon B (1991) Spores of the Pteridophyta. Springer, New YorkGoogle Scholar
  38. USGS (2016) Water-Quality information, water hardness and alkalinity. http://water.usgs.gov/owq/hardness-alkalinity.html
  39. Vannini A, Guarnieri M, Bačkor M et al (2015) Uptake and toxicity of glyphosate in the lichen Xanthoria parietina (L.) Th. Fr. Ecotoxicol Environ Saf 122:193–197.  https://doi.org/10.1016/j.ecoenv.2015.07.030
  40. Walker LR, Landau FH, Velázquez E et al (2010) Early successional woody plants facilitate and ferns inhibit forest development on Puerto Rican landslides. J Ecol 98:625–635.  https://doi.org/10.1111/j.1365-2745.2010.01641.x
  41. Wang WC, Freemark K (1995) The use of plants for environmental monitoring and assessment. Ecotoxicol Environ Saf 30:289–301CrossRefPubMedGoogle Scholar
  42. Williams-Linera G, Palacios-Rios M, Hernández-Gómez R (2005) Fern richness, tree species surrogacy, and fragment complementarity in a Mexican tropical montane cloud forest. Biodivers Conserv 14:119–133.  https://doi.org/10.1007/s10531-005-4053-5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexis Joseph Rodríguez-Romero
    • 1
  • Jacinto Elías Sedeño-Díaz
    • 2
  • Eugenia López-López
    • 1
  • Marta Esteban
    • 3
  • Luis G. Quintanilla
    • 4
  • Myriam Catalá
    • 4
  1. 1.Laboratorio de Evaluación de la Salud de los Ecosistemas Acuáticos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalCiudad de MéxicoMexico
  2. 2.Coordinación Politécnica para la Sustentabilidad. Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional s/nCiudad de MéxicoMexico
  3. 3.Area of Environmental Toxicity, National Center of Environmental Health, Instituto de Salud Carlos IIIMajadahondaSpain
  4. 4.Department of Biology and Geology, Physics and Inorganic ChemistryUniversity Rey Juan CarlosMóstolesSpain

Personalised recommendations