Ecological Significance of Brassinosteroids in Three Temperate Ferns

  • Aránzazu Gómez-Garay
  • Jose Maria Gabriel y Galán
  • Alberto Cabezuelo
  • Beatriz Pintos
  • Carmen Prada
  • Luisa Martín


In this work, we contribute with the first essay devoted to relating the effect of brassinosteroids on the germination and development of fern spores of Pteridium aquilinum, Polystichum lonchitis and Pteris vittata. The effect of brassinosteroids (BRs) on the germination and development of fern spores is species-dependent. In the case of P. aquilinum, which is antheridiogen sensitive and in which rhizome reproduction predominates, BR treatment caused a negative effect over spore germination. For P. vittata, also antheridiogen sensitive and which forms large populations with sexual origin, BR treatment caused a slight negative effect on spore germination. Finally, for P. lonchitis, antheridiogen insensitive, the effect of BR treatment was positive. Thus, brassinosteroid application seems to regulate fern spore germination by modulating antheridiogen levels. Regarding further gametophyte development, the effects range from increasing the development velocity in P. lonchitis (which would aid the species in their reproductive role under adverse environmental conditions) to the independence in P. aquilinum and P. vittata (which, in general, live under less hard environmental conditions). Further research will be done in order to elucidate in detail the relationship between brassinosteroids, sexual organ expression and sporophyte production in the three species, considering at the time the use of antheridiogen system and the formation of apogamous plants. These results are providing valuable new information regarding the role of brassinosteroids on fern spore germination and growth as well as raising new questions for future studies.


Antheridiogen Development Epibrassinolide Germination Gibberellin Hormones Polystichum Pteridium Pteris 



This study has been partially funded by Universidad Complutense Research Group Programme (Biodiversity and Taxonomy of Cryptogamic Plants, UCM 910801).


  1. Banks JA (1999) Gametophyte development in ferns. Annu Rev Plant Physiol Plant Mol Biol 50:163–186CrossRefPubMedGoogle Scholar
  2. Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San DiegoGoogle Scholar
  3. Beri A, Bir SS (1993) Germination of stored spores of Pteris Vittata L. Am Fern J 83:73–78CrossRefGoogle Scholar
  4. Castroviejo S, Laínz M, López G, Montserrat P, Muñoz F, Paiva J, Villar L (eds) (1986) Flora Iberica I. CSIC, MadridGoogle Scholar
  5. Chia S-SE, Raghavan V (1982) Abscisic acid effects on spore germination and protonemal growth in the fern Mohria Caffrorum. New Phytol 92:31–37CrossRefGoogle Scholar
  6. Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605CrossRefPubMedGoogle Scholar
  7. Clouse SD (2002) Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol Cell 10:973–982CrossRefPubMedGoogle Scholar
  8. Conway E (1949) The autecology of bracken Pteridium aquilinum L. Kuhn the germination of the spore, and the development of the prothallus and the young sporophyte. Proc Roy Soc Edinb 63 B:325–342Google Scholar
  9. Dyer A (1979) The experimental biology of ferns. Academic Press, LondonGoogle Scholar
  10. Fernández H, Bertrand AM, Sánchez-Tames R (1999) Biological and nutritional aspects involved in fern multiplication. Plant Cell Tissue Organ Cult 563:211–214CrossRefGoogle Scholar
  11. Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415CrossRefPubMedGoogle Scholar
  12. Gabriel y Galan JM, Prada C (2010) Pteridophyte spores viability. In: Fernández H, Kumar A, Revilla MA (eds) Working with ferns: issues and applications. Springer, New York, pp 193–205Google Scholar
  13. Gemmrich AR (1986) Antheridiogenesis in the fern Pteris Vittata II. Hormonal control of antheridium formation. J Plant Physiol 125:157–166CrossRefGoogle Scholar
  14. Gomez-Garay A, Pintos B, Manzanera JA, Prada C, Martin L, Gabriel y Galan JM (2016) Nanoceria and bulk cerium oxide effects on the germination of asplenium adiantum-nigrum spores. Forest Systems 253:e067CrossRefGoogle Scholar
  15. Hewitt FR, Hough T, O'Neill P, Sasse JM, Williams EG, Rowan KS (1985) Effect of brassinolide and other growth regulators on the germination and growth of pollen tubes of Prunus Avium using a multiple hanging-drop assay. Funct Plant Biol 12(2):201–211Google Scholar
  16. Huang Y, Hsu S, Hsieh T, Chou H, Chiou W (2011) Three Pteris species (Pteridaceae, Pteridophyta) reproduce by apogamy. Bot Stud 52:79–87Google Scholar
  17. Kartal G, Temel A, Arican E, Gozukirmizi N (2009) Effects of brassinosteroids on barley root growth, antioxidant system and cell division. Plant Growth Regul 58:261–267CrossRefGoogle Scholar
  18. Klekowski EJ, Lloyd RM (1968) Reproductive biology of the Pteridophyta I. General considerations and a study of Onoclea Sensibilis L. J Linn Soc Bot 60:315–324CrossRefGoogle Scholar
  19. Korpelainen H (1997) Comparison of gametophyte growth, sex determination and reproduction in three fern species from the tropics. Nord J Bot 17:133–143CrossRefGoogle Scholar
  20. Kuneš I, Baláš M, Linda R, Gallo J, Nováková O (2016) Effects of brassinosteroid application on seed germination of Norway spruce, Scots pine, Douglas fir and English oak. iForest-Biogeoscience For 10:121Google Scholar
  21. Li KR, Zhang WB, Li HK (2005) Effect of natural brassinolide on germination of Ailanthus Altissima seeds. Forestry Stud China 7:12–14CrossRefGoogle Scholar
  22. Leubner-Metzger G (2001) Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213:758–763CrossRefPubMedGoogle Scholar
  23. Martinez OG (2010) Gametophytes and young sporophytes of four species of the fern genus Pteris (Pteridaceae) naturalized in the American continent. Rev Biol Trop 58:89–102PubMedGoogle Scholar
  24. Mehltreter K, Walker LR, Sharpe JM (2010) Fern ecology. University Press, CambridgeCrossRefGoogle Scholar
  25. Munroe MH, Sussex IM (1969) Gametophyte formation in bracken fern-p root cultures. Can J Bot 47:617–621CrossRefGoogle Scholar
  26. Nomura T, Bishop GJ (2006) Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochem Rev 5:421–432CrossRefGoogle Scholar
  27. Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S (2005) The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J Biol Chem 280:17873–17879CrossRefPubMedGoogle Scholar
  28. Pangua E, Quintanilla LG, Sancho A, Pajarón S (2003) A comparative study of the gametophytic generation in the Polystichum Aculeatum group Pteridophyta. Int J Plant Sci 164:295–303CrossRefGoogle Scholar
  29. Prada C, Moreno V, Gabriel y Galan JM (2008) Gametophyte development, sex expression and antheridiogen system in Pteris Incompleta Cav. Pteridaceae. Am Fern J 98:14–25CrossRefGoogle Scholar
  30. Raghavan V (1989) Developmental biology of fern gametophytes. University Press, CambridgeCrossRefGoogle Scholar
  31. Regalado L, Prada C, Gabriel y Galán JM (2010) Sexuality and apogamy in the Cuban Asplenium auritum-monodon Complex Aspleniaceae. Plant Syst Evol 289:137–146CrossRefGoogle Scholar
  32. Ross JJ, Reid JB (2010) Evolution of growth-promoting plant hormones. Funct Plant Biol 37:795–805CrossRefGoogle Scholar
  33. Salvo E (1990) Guía de helechos de la Península Ibérica y Baleares. Pirámide, MadridGoogle Scholar
  34. Schneller J (2008) Antheridiogens. In: Ranker TA, Hauffler CH (eds) Biology and evolution of ferns and lycophytes. University Press, Cambridge, pp 134–158CrossRefGoogle Scholar
  35. Seral A, Gabriel y Galán JM (2016) Gametophytic phase of Doryopteris triphylla (Pteridaceae, Polypodiopsida). Botanica Complutensis 40:63–70Google Scholar
  36. Sheffield E (1996) From pteridophyte spore to sporophyte in the natural environment. In: Camus JM, Gibby M, Johns R (eds) Pteridology in perspective. Royal Botanic Gardens, Kew, pp 541–549Google Scholar
  37. Shorina NI (2001) Population biology of gametophytes in homosporous polypodiophyta. Russ J Ecol 323:164–169CrossRefGoogle Scholar
  38. Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47:111–119CrossRefGoogle Scholar
  39. Sotomayor C, Castro J, Velasco N, Toro R (2012) Influence of seven growth regulators on fruit set, pollen germination and pollen tube growth of almonds. J Agric Sci Technol B 2(9B):1051Google Scholar
  40. Srivastava K, Raghavan N, Raghavan RP (2011) Brassinosteroids stimulate seed germination parameters and chlorophyll content in moongbean. Indian J Scientific Res 2:89Google Scholar
  41. Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125:763–769CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777CrossRefPubMedPubMedCentralGoogle Scholar
  43. Suo J, Zhao Q, Zhang Z, Chen S, Cao J, Liu G, Wei X, Dai S (2015) Cytological and proteomic analyses of Osmunda Cinnamomea germinating spores reveal characteristics of fern spore germination and rhizoid tip-growth. Mol Cell Proteomics 14:2510–2534. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Takatsuto S (1994) Brassinosteroids: distribution in plants, bioassays and microanalysts by gas chromatography—mass spectrometry. J Chromatogr A 658:3–15CrossRefGoogle Scholar
  45. Tanaka J, Yano K, Aya K, Hirano K, Takehara S, Koketsu E, Ordonio RL, Park SH, Nakajima M, Ueguchi-Tanaka M, Matsuoka M (2014) Antheridiogen determines sex in ferns via a spatiotemporally split gibberellin synthesis pathway. Science 346:469–473CrossRefPubMedGoogle Scholar
  46. Thussagunpanit J, Jutamanee K, Chai-arree W, Kaveeta L (2012) Increasing photosynthetic efficiency and pollen germination with 24-Epibrassinolide in rice (Oryza Sativa L.) under heat stress. Thai J Botany 4:135–143Google Scholar
  47. Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y et al (2014) Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26:4376–4393CrossRefPubMedPubMedCentralGoogle Scholar
  48. Trewavas A (1991) How do plant growth substances work? II. Plant Cell Environ 14:1–12CrossRefGoogle Scholar
  49. Vardhini BV, Rao SSR (1997) Effect of brassinosteroids on growth, metabolite content and yield of Arachis Hypogaea. Phytochemistry 48:927–930CrossRefGoogle Scholar
  50. Vesty EF, Saidi Y, Moody LA, Holloway D, Whitbread A, Needs S, Choudhary A, Bae H (2016) The decision to germinate is regulated by divergent molecular networks in spores and seeds. New Phytol 211:952–966CrossRefPubMedPubMedCentralGoogle Scholar
  51. Whittier DP (1966) Induced apogamy in diploid gametophytes of Pteridium. Can J Bot 44:1717–1721CrossRefGoogle Scholar
  52. Yamaguchi T, Wakizuka T, Hirai K, Fujii S, Fujita A (1987) Stimulation of germination in aged rice seed by pre-treatment with brassinolide. In: Proceedings of the 14th annual plant growth regulator Society of America meeting, Hawaii, pp 26–27Google Scholar
  53. Ylstra B, Touraev A, Brinkmann AO, Heberle-Bors E, Tunen AJV (1995) Steroid hormones stimulate germination and tube growth of in vitro matured tobacco pollen. Plant Physiol 107:639–643CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yokota T, Takahashi N (1986) Chemistry, physiology and agricultural application of brassinolide and related steroids. In: Plant growth substances. Springer, Berlin, pp 129–138Google Scholar
  55. Yokota T, Ohnishi T, Shibata K, Asahina M, Nomura T, Fujita T, Kohchi T (2017) Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern. Phytochemistry 136:46–55CrossRefPubMedGoogle Scholar
  56. Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci 106:4543–4548CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Aránzazu Gómez-Garay
    • 1
  • Jose Maria Gabriel y Galán
    • 1
  • Alberto Cabezuelo
    • 1
  • Beatriz Pintos
    • 1
  • Carmen Prada
    • 1
  • Luisa Martín
    • 1
  1. 1.Department of Plant Sciences IUniversidad ComplutenseMadridSpain

Personalised recommendations