The Gametophyte of Fern: Born to Reproduce

  • Alejandro Rivera
  • María Jesús Cañal
  • Ueli Grossniklaus
  • Helena Fernández
Chapter

Abstract

The gametophyte of ferns is a cellular monolayer structure, whose more important function is to form the gametes, responsible of sexual fusion that will lead to sporophyte generation. In most cases, as sporophyte develops, the gametophyte is about to disappear, reflecting to have a role purely involved on reproduction. Omics technologies based on comprehensive biochemical and molecular characterizations of an organism, tissue, or cell type and next-generation omics approaches facilitate the analyses of non-model organisms owing to the rapid generation of large amounts of de novo systems biology data, making them attractive options for studying plant development and evolution.

Keywords

Antheridiogen Apogamy Blechnum spicant Dryopteris affinis ssp. affinis Gametophyte Proteomic 

References

  1. Aya K, Kobayashi M, Tanaka J, Ohyanagi H, Suzuki T, Yano K, Takano T, Yano K, Matsuoka M (2015) De novo transcriptome assembly of a fern, Lygodium japonicum, and a web resource database, Ljtrans DB. Plant Cell Physiol 56:e5CrossRefPubMedGoogle Scholar
  2. Barcaccia G, Albertini E (2013) Apomixis in plant reproduction: a novel perspective on an old dilemma. Plant Reprod 26:159–179CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barker MS, Wolf PG (2010) Unfurling fern biology in the genomics age. Bioscience 60:177–185CrossRefGoogle Scholar
  4. Bateman RM, Dimichele WA (1994) Heterospory: the most iterative key innovation in the evolutionary history of the plant kingdom. Biol Rev 69:345–417CrossRefGoogle Scholar
  5. Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103:999–1004CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16(Suppl):S228–S245CrossRefPubMedPubMedCentralGoogle Scholar
  7. Braithwaite AF (1964) A new type of apogamy in ferns. New Phytol 63:293–305CrossRefGoogle Scholar
  8. Bui LT, Pandzic D, Youngstrom CE, Wallace S, Irish EE, Szövényi P, Cheng C-L (2017) A fern AINTEGUMENTA gene mirrors BABY BOOM in promoting apogamy in Ceratopteris richardii. Plant J 90:122–132CrossRefPubMedGoogle Scholar
  9. Bushart TJ, Cannon AE, Ul Haque A, San Miguel P, Mostajeran K, Clark GB, Porterfield DM, Roux SJ (2013) RNA-seq analysis identifies potential modulators of gravity response in spores of Ceratopteris (Parkeriaceae): evidence for modulation by calcium pumps and apyrase activity. Am J Bot 100:161–174CrossRefPubMedGoogle Scholar
  10. Chaturvedi P, Ghatak A, Weckwerth W (2016a) Pollen proteomics: from stress physiology to developmental priming. Plant Reprod 29:119–132CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chaturvedi P, Selymesi M, Ghatak A, Mesihovic A, Scharf K-D, Weckwerth W, Simm S, Schleiff E (2016b) The membrane proteome of male gametophyte in Solanum lycopersicum. J Proteome 131:48–60CrossRefGoogle Scholar
  12. Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 94(8):4223–4228CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cordle AR, Irish EE, Cheng CL (2007) Apogamy induction in Ceratopteris richardii. Int J Plant Sci 168:361–369CrossRefGoogle Scholar
  14. Cordle AR, Bui LT, Irish EE, Cheng CL (2010) Laboratory-induced apogamy and apospory in Ceratopteris richardii. In: Fernández H, Kumar A, Revilla MA (eds) Working with Ferns. Issues and applications, New York, Springer, pp 25–36Google Scholar
  15. Cordle AR, Irish EE, Cheng CL (2012) Gene expression associated with apogamy commitment in Ceratopteris richardii. Sex Plant Reprod 25:293–304CrossRefPubMedGoogle Scholar
  16. Cousens MI (1979) Gametophytic ontogeny, sex expression, and genetic load as measures of population divergence in Blechnum spicant. Am J Bot 66:116–132Google Scholar
  17. d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis (GP Copenhaver, Ed.) PLoS Biol 7:e1000124CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dai S, Wang T, Yan X, Chen S (2007) Proteomics of pollen development and germination. J Proteome Res 6:4556–4563CrossRefPubMedGoogle Scholar
  19. De Vries J, Fischer AM, Roettger M, Rommel S, Schluepmann H (2016) Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. New Phytologist, 209:705–720Google Scholar
  20. Der JP, Barker MS, Wickett NJ, dePamphilis CW, Wolf PG (2011) De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum. BMC Genomics 12:99CrossRefPubMedPubMedCentralGoogle Scholar
  21. DeSmet I, Lau S, Mayer U, Jürgens G (2010) Embryogenesis – the humble beginnings of plant life. Plant J 61:959–970CrossRefGoogle Scholar
  22. Domżalska L, Kędracka-Krok S, Jankowska U, Grzyb M, Sobczak M, Rybczyński JJ, Mikuła A (2017) Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb. Plant Sci 258:61–76CrossRefPubMedGoogle Scholar
  23. Döpp W (1939) Cytologische und genetische Untersuchungen innerhalb der Gattung Dryopteris. Planta 29:481Google Scholar
  24. Eeckhout S, Leroux O, Willats WGT, Popper ZA, Viane RLL (2014) Comparative glycan profiling of Ceratopteris richardii C-Fern` gametophytes and sporophytes links cell-wall composition to functional specialization. Ann Bot 114:1295–1307CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ehrhardt DW, Frommer WB (2012) New technologies for 21st century plant science. Plant Cell 24:374–394CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ekrt L, Koutecký P (2016) Between sexual and apomictic: unexpectedly variable sporogenesis and production of viable polyhaploids in the pentaploid fern of the Dryopteris affinis agg. (Dryopteridaceae). Ann Bot 117:97–106CrossRefPubMedGoogle Scholar
  27. Fernández H, Revilla MA (2003) In vitro culture of ornamental ferns. Plant Cell Tissue Organ Cult 73:1–13CrossRefGoogle Scholar
  28. Fernández H, Bertrand AM, Sánchez-Tamés R (1996) Influence of tissue culture conditions on apogamy in Dryopteris affinis sp. affinis. Plant Cell Tissue Organ Cult 45:93–97CrossRefGoogle Scholar
  29. Fernández H, Bertrand AM, Feito I, Sánchez-Tamés R (1997) Gametophyte culture in vitro and antheridiogen activity in Blechnum spicant. Plant Cell Tissue Organ Cult 50:71–77CrossRefGoogle Scholar
  30. Fernández H, Bertrand AM, Sierra MI, Sánchez-Tamés R (1999) An apolar GA-like compound responsible for the antheridiogen activity in Blechnum spicant. Plant Growth Regul 28:143–144CrossRefGoogle Scholar
  31. Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857CrossRefPubMedGoogle Scholar
  32. Grossmann J, Fernández H, Chaubey PM, Valdés AE, Gagliardini V, Cañal MJ, Russo G, Grossniklaus U (2017) Proteogenomic analysis greatly expands the identification of proteins related to reproduction in the apogamous fern Dryopteris affinis ssp. affinis. Front Plant Sci 8Google Scholar
  33. Grossniklaus U, Koltunow A, van Lookeren Campagne M (1998) A bright future for apomixis. Trends Plant Sci 3:415–416CrossRefGoogle Scholar
  34. Grossniklaus U, Nogler GA, van Dijk PJ (2001) How to avoid sex: the genetic control of developmental aspects. Plant Cell 13:1491–1497Google Scholar
  35. Haufler CH, Pryer KM, Schuettpelz E, Sessa EB, Farrar DR, Moran R, Schneller JJ, Watkins JE, Windham MD (2016) Sex and the single gametophyte: revising the homosporous vascular plant life cycle in light of contemporary research. Bioscience 66:928–937CrossRefGoogle Scholar
  36. Hendrix SD (1980) An evolutionary and ecological perspective of the insect fauna of ferns The American Society of Naturalists An Evolutionary and Ecological Perspective of the Insect Fauna of Ferns. Am Nat Source Am Nat 115:171–196CrossRefGoogle Scholar
  37. Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijón M, Egelhofer V, Weckwerth W (2014) Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 14(:295–310CrossRefGoogle Scholar
  38. Jorrín-Novo JV, Pascual J, Sánchez-Lucas R, Romero-Rodríguez MC, Rodríguez-Ortega MJ, Lenz C, Valledor L (2015) Fourteen years of plant proteomics reflected in Proteomics: moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics 15:1089–1112CrossRefPubMedGoogle Scholar
  39. Kandemi̇r N, Saygili İ (2015) Turkish Journal of Agriculture and Forestry Apomixis: new horizons in plant breedingGoogle Scholar
  40. Kazmierczak A (2010) Gibberellic acid and ethylene control male sex determination and development of Anemia phyllitidis gametophytes. In: Fernández H, Kumar A, Revilla MA (eds) Working with ferns. Issues and applications. Springer, New York, pp 49–65Google Scholar
  41. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39CrossRefGoogle Scholar
  42. Kerim T, Imin N, Weinman JJ, Rolfe BG (2003) Proteome analysis of male gametophyte development in rice anthers. Proteomics 3:738–751CrossRefPubMedGoogle Scholar
  43. Klekowski EJ (1969) Reproductive biology of the Pteridophyta. III. A study of the Blechnaceae. Bot J Linn Soc 62:361–377CrossRefGoogle Scholar
  44. Klekowski EJ, Baker HG (1966) Evolutionary significance of polyploidy in the pteridophyta. Science 153:305–307CrossRefPubMedGoogle Scholar
  45. Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574CrossRefPubMedGoogle Scholar
  46. Koltunow AM, Bicknell RA, Chaudhury AM (1995) Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol 108:1345–1352CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kotani Y, Henderson ST, Suzuki G, et al (2014) The LOSS OF APOMEIOSIS (LOA) locus in Hieracium praealtum can function independently of the associated large-scale repetitive chromosomal structure. New Phytologist 201:973–981Google Scholar
  48. Li JJ, Liu L, Ouyang YD, Yao JL (2011) Sexual reproduction development in apomictic Eulaliopsis binata (Poaceae). Genet Mol Res 10:2326–2339.  https://doi.org/10.4238/2011.October.5.3 CrossRefPubMedGoogle Scholar
  49. Liu H-M, Dyer RJ, Guo Z-Y, Meng Z, Li J-H, Schneider H (2012) The evolutionary dynamics of apomixis in ferns: a case study from polystichoid ferns. J Bot 2012:1–11CrossRefGoogle Scholar
  50. Lopez RA, Renzaglia KS (2014) Multiflagellated sperm cells of Ceratopteris richardii are bathed in arabinogalactan proteins throughout development. Am J Bot 101:2052–2061CrossRefPubMedGoogle Scholar
  51. Manton I (1950) Problems o cytology and evolution in the pteridophyta. Cambridge University PressGoogle Scholar
  52. Marimuthu MPA, Jolivet S, Ravi M et al (2011) Synthetic clonal reproduction through seeds. Science 331:876–876CrossRefPubMedGoogle Scholar
  53. Markham K, Chalk T, Stewart CN Jr (2006) Evaluation of fern and moss protein-based defenses against phytophagous insects. Int J Plant Sci 167:111–117CrossRefGoogle Scholar
  54. Matasci N, Hung L-H, Yan Z et al (2014) Data access for the 1,000 Plants (1KP) project. 3:17Google Scholar
  55. Mayank P, Grossman J, Wuest S, Boisson-Dernier A, Roschitzki B, Nanni P, Nühse T, Grossniklaus U (2012) Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J 72:89–101CrossRefPubMedGoogle Scholar
  56. Menéndez V, Revilla MA, Bernard P, Gotor V, Fernández H (2006a) Gibberellins and antheridiogen on sex in Blechnum spicant L. Plant Cell Rep 25:1104–1110CrossRefPubMedGoogle Scholar
  57. Menéndez V, Villacorta NF, Revilla MA, Gotor V, Bernard P, Fernández H (2006b) Exogenous and endogenous growth regulators on apogamy in Dryopteris affinis (Lowe) Fraser-Jenkins sp. affinis. Plant Cell Rep 25:85–91CrossRefPubMedGoogle Scholar
  58. Mikuła A, Pożoga M, Tomiczak K, Rybczyński JJ (2015) Somatic embryogenesis in ferns: a new experimental system. Plant Cell Rep 34:783–794CrossRefPubMedPubMedCentralGoogle Scholar
  59. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:73–497Google Scholar
  60. Neiman M, Sharbel TF, Schwander T (2014) Genetic causes of transitions from sexual reproduction to asexuality in plants and animals. J Evol Biol 27:1346–1359CrossRefPubMedGoogle Scholar
  61. Nogler GA (1984) Embryology of angioesperms. In: Johri B (ed) Embryology of angiosperms. Springer, Berlín, pp 475–518CrossRefGoogle Scholar
  62. Okada S, Sone T, Fujisawa M et al (2001) The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. Proc Natl Acad Sci U S A 98:9454CrossRefPubMedPubMedCentralGoogle Scholar
  63. Okano Y, Aono N, Hiwatashi Y, Murata T, Nishiyama T, Ishikawa T (2009) A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc Natl Acad Sci U S A 106:16321–16326CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ozias-Akins P (2006) Apomixis: Developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214CrossRefGoogle Scholar
  65. Pannell JR (2017) Plant sex determination. Curr Biol 27:R191–R197CrossRefPubMedGoogle Scholar
  66. Peredo EL, Méndez-Couz M, Revilla MA, Fernández H (2013) Mating system in Blechnum spicant and Dryopteris affinis ssp. affinis correlates with genetic variability. Am Fern J 103:27CrossRefGoogle Scholar
  67. Pires ND, Dolan L (2012) Morphological evolution in land plants: new designs with old genes. Philos Trans R Soc Biol Sci 367:508CrossRefGoogle Scholar
  68. Radoeva T, Weijers D (2014) A roadmap to embryo identity in plants. Trends Plant Sci 19:709–716CrossRefPubMedGoogle Scholar
  69. Rathinasabapathi B (2006) Ferns represent an untapped biodiversity for improving crops for environmental stress tolerance. New Phytol 172:385–390CrossRefPubMedGoogle Scholar
  70. Ravi M, Marimuthu MPA, Siddiqi I (2008) Gamete formation without meiosis in Arabidopsis. Nature 451:1121–1124CrossRefPubMedGoogle Scholar
  71. Rensing SA, Lang D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science (New York, NY) 319:64–69CrossRefGoogle Scholar
  72. Rodriguez-Leal D, Vielle-Calzada J-P (2012) Regulation of apomixis: learning from sexual experience. Curr Opin Plant Biol 15:549–555CrossRefPubMedGoogle Scholar
  73. Romero-Rodríguez MC, Pascual J, Valledor L, Jorrín-Novo J (2014) Improving the quality of protein identification in non-model species. Characterization of Quercus ilex seed and Pinus radiata needle proteomes by using SEQUEST and custom databases. J Proteome 105:85–91CrossRefGoogle Scholar
  74. Sakamaki Y, Ino Y (2007) Gametophyte contribution to sporophyte growth on the basis of carbon gain in the fern Thelypteris palustris: effect of gametophyte organic-matter production on sporophytes. J Plant Res 120:301–308CrossRefPubMedGoogle Scholar
  75. Salmi ML, Bushart TJRS (2010) Cellular, molecular, and genetic changes during the development of Ceratopteris richardii gametophytes. In: Fernández AK H, Revilla MA (eds) Working with ferns. Issues and applications. Springer, New York, pp 11–24Google Scholar
  76. Salmi ML, Bushart TJ, Stout SC, Roux SJ (2005) Profile and analysis of gene expression changes during early development in germinating spores of Ceratopteris richardii. Plant Physiol 138:1734–1745CrossRefPubMedPubMedCentralGoogle Scholar
  77. Salmi ML, Morris KE, Roux SJ, Porterfield DM (2007) Nitric oxide and cGMP signaling in calcium-dependent development of cell polarity in Ceratopteris richardii. Plant Physiol 144:94–104CrossRefPubMedPubMedCentralGoogle Scholar
  78. Salvo E (1990) Guía de helechos de la Península Ibérica y Baleares. Ediciones Pirámide S.A.Google Scholar
  79. Sanchez-Lucas R, Mehta A, Valledor L et al (2016) A year (2014-2015) of plants in Proteomics journal. Progress in wet and dry methodologies, moving from protein catalogs, and the view of classic plant biochemists. Proteomics 16:866–876CrossRefPubMedGoogle Scholar
  80. Schwartz W (2007) Lynn Margulis, Origin of eukaryotic cells. Evidence and research implications for a theory of the origin and evolution of microbial, plant, and animal cells on the precambrian earth. XXII u. 349 S., 89 Abb., 49 Tab. New Haven-London 1970: Yale University. Z Allg Mikrobiol 13:186–186CrossRefGoogle Scholar
  81. Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404CrossRefGoogle Scholar
  82. Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2007) Proteomic analysis of tomato (Lycopersicon esculentum) pollen. J Exp Bot 58:3525–3535CrossRefPubMedGoogle Scholar
  83. Shukla AK, Upadhyay SK, Mishra M et al (2016) Expression of an insecticidal fern protein in cotton protects against whitefly. Nat Biotechnol 34:1046–1051CrossRefPubMedGoogle Scholar
  84. Spillane C, Curtis MD, Grossniklaus U (2004) Apomixis technology development—virgin births in farmers’ fields? Nat Biotechnol 22:687–691CrossRefPubMedGoogle Scholar
  85. Suo J, Zhao Q, Zhang Z, Chen S, Cao J, Liu G, Wei X, Wang T, Yang C, Dai S (2015) Cytological and proteomic analyses of Osmunda cinnamomea germinating spores reveal characteristics of fern spore germination and rhizoid tip growth. Mol Cell Proteomics 14:2510–2534CrossRefPubMedPubMedCentralGoogle Scholar
  86. Taiz L, Zeiger E (2015) Plant physiology and development. Sinauers Associates, Inc., SunderlandGoogle Scholar
  87. Tucker MR, Araujo A-CG, Paech NA, Hecht V, Schmidt EDL, Rossell J-B, De Vries SC, Koltunow AMG (2003) Sexual and apomictic reproduction in Hieracium subgenus pilosella are closely interrelated developmental pathways. Plant Cell 15:1524–1537CrossRefPubMedPubMedCentralGoogle Scholar
  88. Valledor L, Jorrín JV, Rodríguez JL, Lenz C, Meijón M, Rodríguez R, Cañal MJ (2010) Combined proteomic and transcriptomic analysis identifies differentially expressed pathways associated to Pinus radiata needle maturation. J Proteome Res 9:3954–3979CrossRefPubMedGoogle Scholar
  89. Valledor L, Menéndez V, Canal MJ, Revilla A, Fernández H (2014) Proteomic approaches to sexual development mediated by antheridiogen in the fern Blechnum spicant L. Proteomics 14:1–11Google Scholar
  90. von Aderkas P (1984) Promotion of apogamy in Matteuccia struthiopteris, the Ostrich Fern. Am Fern J 74(1):1–6Google Scholar
  91. Wada M (2007) The fern as a model system to study photomorphogenesis. J Plant Res 120:3–16CrossRefPubMedGoogle Scholar
  92. Wang X, Chen S, Zhang H, Shi L, Cao F, Guo L, Xie Y, Wang T, Yan X, Dai S (2010) Desiccation tolerance mechanism in resurrection Fern-Ally Selaginella tamariscina revealed by physiological and proteomic analysis. J Proteome Res. 9:6561–6577Google Scholar
  93. Ward JA, Ponnala L, Weber CA (2012) Strategies for transcriptome analysis in nonmodel plants. Am J Bot 99:267–276CrossRefPubMedGoogle Scholar
  94. Wen CK, Smith R, Banks JA (1999) ANI1. A sex pheromone-induced gene in Ceratopteris gametophytes and its possible role in sex determination. Plant Cell 11:1307–1318PubMedPubMedCentralGoogle Scholar
  95. Whittier DP, Steeves T (1960) The induction of apogamy in the bracken fern. Can J Bot 38:925–930CrossRefGoogle Scholar
  96. Whittier D, Steeves T (1962) Further studies on induced apogamy in ferns. Can J Bot 40:1525–1531CrossRefGoogle Scholar
  97. Yang HY, Zhou C (1992) Experimental plant reproductive biology and reproductive cell manipulation in higher plants: now and the future. Am J Bot 79:354–363CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alejandro Rivera
    • 1
  • María Jesús Cañal
    • 1
  • Ueli Grossniklaus
    • 2
  • Helena Fernández
    • 1
  1. 1.Area of Plant Physiology, Department of Organisms and Systems Biology (BOS)Oviedo UniversityOviedoSpain
  2. 2.Department of Plant and Microbial BiologyUniversity of ZürichZürichSwitzerland

Personalised recommendations